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SUMMARY
Breastfeeding andmicrobial colonization during infancy occur within a critical time window for development,
and both are thought to influence the risk of respiratory illness. However, themechanisms underlying the pro-
tective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we
profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of
2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with
milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found
that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial spe-
cies and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously
linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced mi-
crobial development, protecting against asthma. These findings underscore the importance of extended
breastfeeding for respiratory health and highlight potential microbial targets for intervention.
INTRODUCTION

Early-life gut and nasal microbiome and healthy
development
The ecological process of microbial colonization during early life

is crucial. Experiments in germ-free animals have shown that mi-
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crobial colonization induces anatomical development, increases

epithelial cell turnover rates, and kick-starts the maturation of

the gut-associated lymphoid tissue.1,2 Similarly, in the first

months of life, infants rely on the acquisition of new microbial

species and functions in order to complete immunological

and physiological development. The establishment of the gut
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microbiome adheres to consistent patterns,3–11 with initial verti-

cal transmission at birth.12,13 Subsequently, the infant gut micro-

biome undergoes distinct shaping influenced by various physio-

logical, dietary, and environmental factors.14 Similarly, the

dynamic respiratory tract microbiome undergoes marked

changes in early life and is associated with various host and

environmental factors, including birth mode, feeding type, anti-

biotic treatment, and crowding conditions.15,16 However, the

‘‘optimal’’ timing and mechanisms regulating the gain of newmi-

crobial species and functions in these two important niches are

poorly understood.

There is robust evidence associating early-life gut and respira-

tory tract microbiomes with respiratory illness.17–27 For example,

gut microbiome maturation in the first year of life contributes to

the protective ‘‘farm effect’’ against childhood asthma,27 and

early-life gut microbial dysbiosis has been consistently identified

as an asthma risk factor.18 There is also evidence linking dysbio-

sis of microbiota residing in the mucosal surfaces, including the

nasopharynx, with immune modulation and severe infections.28

Moreover, nasal and airway microbiome composition and

maturation patterns have been repeatedly linked with future

respiratory health.17–26,29,30 Nonetheless, it remains unclear if

it is merely the presence or abundance of specific microbes

that matters, or whether the timing and order of their arrival in

different body sites may also play a role. Indeed, emerging

data hint that when the order or timing of colonization is altered,

a normally commensal microbe could become pathogenic.30,31

We therefore hypothesize that microbial colonization patterns

in early life are crucial to the establishment and function of micro-

bial communities as well as healthy infant respiratory develop-

ment (Figure 1A, axis 1).

Breastfeeding and weaning from humanmilk as primary
drivers of microbiome development
It is well established that gut microbial composition in infancy is

influenced by breastfeeding and human milk.6,32–35 For instance,

breastfeeding is associated with lower bacterial diversity, higher

proportions of Bifidobacterium, and a gradual maturation of the

gut microbiota.6,32 Cross-sectional associations with the naso-

pharyngeal microbiota have also been identified,36,37 including

positive associations with commensals of the respiratory tract,

such as Dolosigranulum and Corynebacterium, and negative as-

sociations with some potentially pathogenic microbiota, namely

Staphylococcus, Veillonella, Prevotella, Rothia, and Gemella, at

the first months of life.36 Breastfeeding imparts a competitive

advantage to strains capable of utilizing the complex sugars in hu-

manmilk (knownashumanmilk oligosaccharides [HMOs]), exem-

plified byBifidobacterium and Bacteroides.38 Additionally, wean-

ing from breastfeeding and the introduction of solid food were

associatedwith significant changes in themicrobiota and immune

system maturation.32,35,39 Animal models further show that re-

stricting microbiome maturation during weaning stunts immune

systemdevelopment and increases susceptibility to enteric infec-

tion.40 However, the consequences of early weaning on micro-

biomematurationand respiratoryhealth arenot thoroughlyunder-

stood. In general, we propose that a more comprehensive

understanding ofmicrobial colonization as amechanism underly-

ing the health benefits of breastfeeding is needed (Figure 1A, axis
5432 Cell 187, 5431–5452, September 19, 2024
2). Elucidating how early weaning from human milk may disrupt

this process is crucial and could prove essential in devising tar-

geted early-life interventions to support optimal development.

Breastfeeding and respiratory health
It is also well established that breastfeeding is associated with

lower rates of respiratory infections and immune-mediated dis-

eases, both during and beyond infancy.41–50 For example, in

the CHILD Cohort Study, we have observed that breastfeeding

is associated with lower rates of wheezing in the first year of

life48,49 and lower odds of asthma by 3 years of age,49,50 consis-

tent with other cohorts from around the world.43–47 In addition, a

recent study found that a longer period of exclusive breastfeed-

ing was associated with decreased risk of childhood asthma.51

However, the mechanisms (microbial or otherwise) underlying

the association between breastfeeding and respiratory health

remain poorly understood (Figure 1A, axis 3).

To examine whether infant microbiome colonization is one of

the paths through which breastfeeding is associated with respi-

ratory health (Figure 1A combining all 3 axes), we profiled nasal

microbiome trajectories in the first year of life among 2,227 in-

fants from the CHILD Cohort Study. For many of these infants,

we also profiled their gut microbiome trajectories and analyzed

themilk composition of their mothers. We developed designated

computational approaches to analyze our extensive longitudinal,

multi-omics dataset, allowing us to identify an accelerated gain

of specificmicrobial species and functions in both niches among

infants who experienced early cessation of breastfeeding and

those later diagnosed with respiratory illness. We further used

a rigorous machine learning framework to demonstrate that

these patterns are clinically and biologically relevant, with the ca-

pacity to accurately predict preschool asthma years in advance.

Finally, we devised a causal inference framework and demon-

strated that the colonization patterns of both the nasal and gut

microbiota mediate the protective effect of breastfeeding on

asthma. Collectively, these results advance our understanding

from mere associations to prediction and causality, providing

new mechanistic links between breastfeeding, microbial coloni-

zation patterns, and infant health and development.

RESULTS

Profiling nasal and gut microbiota development in the
first year of life across thousands of infants
We profiled the nasal microbiome composition of infants from

the CHILD Cohort Study at age 3 months (median [interquartile

range (IQR)] 3.4 [3.0–4.2]; n = 2,227) and 1 year (12.0 [11.5–

12.8]; n = 1,868), using 16S rRNA gene sequencing (Figure 1A).

We further conducted comprehensive profiling of the gut micro-

biome in a subset of 1,306 infants, integrating 16S rRNA and

shotgun metagenomics sequencing data along with NMR and

liquid chromatography-tandem mass spectrometry (LC-MS/

MS) data for metabolomics profiling (STAR Methods; Figure S1).

We coupled these data with the milk composition of their

mothers (e.g., fatty acids, immunoglobulins, oligosaccharides;

n = 803), as characterized in previous studies.34,52,53

Overall, nasal microbial communities were dominated by spe-

cies from the generaMoraxella, Streptococcus, Staphylococcus,



Figure 1. Study design and nasal and gut microbiota composition in early life in the CHILD Cohort Study

(A) Timeline of early-life exposures, infant nasal and gutmicrobiome data, and respiratory phenotypes in the CHILDCohort Study, and hypothesis testing across 3

axes: (axis 1) microbiome development and respiratory health, (axis 2) breastfeeding and microbiome development, and (axis 3) breastfeeding and respiratory

health. Sample sizes shown are after all preprocessing filters have been applied (see Figure S1).

(B and C) Average relative abundances (%) of genera (defined by 16S rRNA gene sequencing) present in at least 70% of samples at either 3 months and/or 1 year

of age for (B) nasal microbiota (3months [n = 2,227], 1 year [n = 1,869]) and (C) gut microbiota (3months [n = 744], 1 year [n = 728]). Numbers in brackets represent

the number of samples used to calculate the average relative abundances.

See also Figure S1 and Table S1.
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Dolosigranulum,Corynebacterium, andHaemophilus (Figure 1B),

with considerable inter-individual variability (Table S1). At

3months, nasal communities primarily comprisedStreptococcus

(median 17.7% [IQR 5.7–39.9]), Corynebacterium (2.3% [0.5–

9.1]), Moraxella (1.8% [0.1–70.4]), Dolosigranulum (1.8% [0.04–

13.4]), and Staphylococcus (0.4% [0.07–2.0]). As reported previ-
ously,34,53 the gut microbial communities at 3 months and 1

year were dominated by species from the genusBifidobacterium,

Bacteroides, Escherichia, and Blautia (Figure 1C).

A defining strength of the CHILD cohort is the extensive meta-

data encompassing breastfeeding status (e.g., duration, exclu-

sivity, feeding mode), environmental exposures (e.g., antibiotics,
Cell 187, 5431–5452, September 19, 2024 5433
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pre- and post-natal smoke exposure, birth mode, daycare atten-

dance), viral infection, and structured clinical symptoms and di-

agnoses (Figure 1A). Breastfeeding status was categorized into 3

groups: ‘‘exclusive breastmilk (BM),’’ ‘‘partial BM,’’ and ‘‘no BM’’

at 3 months of age (the time of stool, nasal, and milk sample

collection). Infants in the exclusive BM group received only their

mother’s milk from birth until the time of sample collection (n =

794), those in the partial BM group were fed a mixture of

mother’s milk and formula (n = 517), and those in the no BM

group were not receiving mother’s milk at the time of sample

collection scheduled for age 3 months (n = 234). Infants who

were never breastfed at all (n = 55) were excluded from analysis,

as we wished to estimate the effects of early breastfeeding

cessation. Breastfeeding and other sociodemographic charac-

teristics are shown in Table S2.

Breastfeeding is the most consistent early-life factor
associated with nasal and gut microbiota profiles
Next, we explored how nasal and gut microbiome profiles at

3 months and 1 year are associated with early-life factors (i.e.,

environmental exposures, infant, and maternal factors as well

as feeding characteristics; Figure 2A). We found that breastfeed-

ing status at the time of sampling (i.e., exclusive vs. cessation of

breastfeeding before 3 months; any vs. no breastfeeding at 1

year) was the most consistent association in both strength and

direction for microbiome richness, diversity, and composition

across both niches (e.g., p < 0.001 for richness and diversity

and p < 0.05 for composition at 3 months in both niches, with

persistence to 1 year for richness and composition at p < 0.05;

Figure 2A). Of note, the nasal and gut microbiome profiles

were also variably associated with other early-life factors

including environmental exposures (e.g., presence of siblings,

maternal intrapartum antibiotics, season), maternal and infant

characteristics (e.g., maternal smoking, BMI, infant weight),

and rhinovirus/enterovirus infections, with generally smaller ef-

fect sizes (Figure 2A). However, unlike breastfeeding, these fac-

tors were not consistently associated with microbiome profiles

across time and niches.

To explore how microbiome dynamics in the first year of life

are affected by early-life factors, we evaluated microbiome rich-

ness and diversity trajectories, defined as the change in richness
Figure 2. Nasal and gut microbiome profiles and trajectories are ass

infant, and environmental factors

(A) Associations between early-life factors and infant nasal and gut microbiota ana

nasal and n = 744 for gut] and 1 year [n = 1,868 for nasal and n = 728 for gut]) and as

gut]). Showing variation explained as the R2 of the linear model (richness [obser

diversity from 3months to 1 year]), or R2 of the redundancy analysis [microbiota co

Abbreviations: ‘‘Antibiotics, 1y,’’ any antibiotics given within the first year of life; ‘‘A

pre-pregnancy body mass index.

(B) Associations between breastfeeding at sample collection and measures of

Adjusted models include the following covariates: older siblings, antibiotics, R/E

study center, and exact age at 3-month sample collection. Estimates refer to exclu

models and breastfed vs. no longer breastfed for 1-year models. Partially breastfe

and nasal trajectory (n = 1,545); gut 3 months, gut 1 year, and gut trajectory (n =

(C–F) Within nasal and gut niches, microbiota richness and diversity compared

diversity trajectories (i.e., change between 3 months and 1 year) (D and F), for inf

longer breastfed (no BM, nasal n = 234, gut n = 79) at the 3-month sample collecti

n = 1,236, gut n = 421) develop asthma by 3 years (E and F). Comparisons teste

See also Figure S2.
(observed operational taxonomic units [OTUs]) or diversity

(Shannon index) between 3 months and 1 year, respectively

(STAR Methods). Overall, we found that microbiota trajectories

were associated with fewer environmental, maternal, and infant

factors, as compared with the cross-sectional snapshots of

these measures at 3 months or 1 year. However, breastfeeding

remained significantly associated with most trajectory measures

across both niches (Figure 2A). Further, nasal and gut micro-

biome richness and diversity, both cross-sectionally at 3 months

and as trajectories, remained associated with breastfeeding

after adjusting for covariates using multivariate regression (rich-

ness trajectory, nasal: p < 0.001 and gut: p = 0.021; diversity tra-

jectory, nasal: p = 0.004 and gut: p < 0.001; Figure 2B). Specif-

ically, we found a greater increase in richness and diversity

over time for infants exclusively breastfed, compared with those

who experienced early cessation of breastfeeding (richness tra-

jectory [change in number of species], nasal: median [IQR] 24.0

[�3.0–55.0] for exclusively breastfed vs. 10.0 [�17.0–41.0] for

non-breastfed, p < 0.001; gut: 20.0 [5.0–34.0] vs. 12.0 [�10.5–

25.5], p = 0.004; diversity trajectory [change in Shannon index],

nasal: 0.17 [�0.57–0.99] vs. 0.14 [�0.90–0.79], p = 0.028; gut:

0.87 [0.16–1.36] vs. 0.34 [�0.41–0.81], p < 0.001, Mann-

Whitney U test; Figures 2C and 2D).

Notably, we found similar associations between these tempo-

ral measures and preschool asthma, namely: a greater increase

in richness (nasal and gut) and diversity (gut) over time in healthy

infants, compared with those diagnosed with asthma at 3 years

of age (richness trajectory, nasal: 23.0 [�5.0–54.0] for healthy in-

fants vs. 12.5 [�8.3–35.3] for those who developed asthma, p =

0.046; gut: 20.0 [3.0–33.0] vs. 8.5 [�17.8–23.3], p = 0.001; diver-

sity trajectory, nasal: 0.22 [�0.60–1.02] vs. 0.16 [�0.54–0.80],

p = 0.90; gut: 0.79 [�0.01–1.31] vs. 0.45 [�0.64–0.96], p =

0.004; Figures 2E and 2F). Interestingly, while breastfeeding

was associated with both cross-sectional and temporal mea-

sures of nasal richness, associations with asthma at 3 years

only reached significance for temporal measures (Figure S2).

Based on these results, we hypothesize that temporal

changes in diversity and richness from 3 months to 1 year are

more biologically conserved, compared to the community state

at a single time point. Thus, these changes likely provide a more

robust representation of microbiome development that is less
ociated with breastfeeding, preschool asthma, and other maternal,

lyzed by 16S rRNA gene sequencing at two time points (3 months [n = 2,227 for

a trajectory (change from 3months to 1 year [n = 1,545 for nasal and n = 555 for

ved OTUs], diversity [Shannon index] and trajectories [change in richness and

mposition]. p values were adjusted using Benjamini-Hochberg (BH) correction.

ntibiotics, Birth,’’ intrapartum antibiotics given to the mother; ‘‘BMI,’’ maternal

microbiota richness and diversity, tested using multivariate linear regression.

virus, colds, maternal asthma, pre-natal smoke exposure, Cesarean section,

sively breastfed vs. no longer breastfed at 3 months for 3-month and trajectory

d infants were included tomaximize sample sizes: nasal 3months, nasal 1 year,

555). The same dataset was used for all models to ensure comparability.

between 3 months and 1 year of age (C and E) and microbiota richness and

ants exclusively breastfed (exclusive, nasal n = 794, gut n = 271) and those no

on (C and D), and for infants who did (nasal n = 80, gut n = 56) and did not (nasal

d using Mann-Whitney U test. *p < 0.05; **p < 0.001. BM, breast milk.

Cell 187, 5431–5452, September 19, 2024 5435
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susceptible to ‘‘noise’’ and local environmental factors than a

static community state. We further suggest that the process of

acquiring new species and functions during early life is a more

meaningful indicator of infant and child health, compared with

the community state at any single point in time.

Microbiome colonization patterns and the ‘‘PreTCO
system’’
To better characterize nasal and gut microbiome changes in the

first year of life, we defined three colonization patterns (‘‘early,’’

‘‘persistent,’’ and ‘‘late’’) and applied them to each taxon. To

determine the most common colonization pattern for each taxon

at the overall cohort level, we compared prevalence between 1

year and 3 months and assigned a p value using a McNemar

test, allowing us to statistically identify colonization patterns as

early (higher prevalence at 3 months), late (higher prevalence

at 1 year), or persistent (similar prevalence at both time points)

(STAR Methods; Figure 3A; Table S3). At the individual infant

level, taxa were labeled based on their presence or absence at

each time point (early, if present at 3 months only; late, if present

at 1 year only; persistent, if present at both time points; or ‘‘ab-

sent,’’ if absent at both time points).

Across the 170 nasal taxa detected, over half were late colo-

nizers at the cohort level (53%, 91/170), for example, Strepto-

coccus salivarius (S. salivarius) sp. 5, with a prevalence of 31%

at 3 months and 64% at 1 year. Persistent colonizers accounted

for 37% (63/170) of the total, including all Moraxella taxa. Only a

few taxa were considered early colonizers (10%, 17/170), for

example, five of the six Staphylococcus spp., including Staphy-

lococcus aureus 10 (29%prevalence at 3months, 15% at 1 year)

(Figure 3A). Similarly, across the 115 gut taxa, the majority were

late colonizers (57%, 65/115), for example, Ruminococcus gna-

vus (R. gnavus) (54% at 3 months, 84% at 1 year) and Flavoni-

fractor sp. (46% at 3 months, 74% at 1 year). Persistent colo-

nizers were 38% of the total, for example, Escherichia coli

(80% at 3 months, 86% at 1 year) and Bifidobacterium catenula-

tum (30% at 3 months, 38% at 1 year). As in the nasal niche, only

a few were early colonizers (5%, 6/115), for example Staphylo-

coccus spp. 1 (33% at 3 months, 10% at 1 year) (Figure 3A).

These results are in line with the concept of ecological succes-

sion, where an initial increase in complexity is followed by the
Figure 3. Nasal and gut microbiota colonization patterns and their ass
(A) Showing the difference in prevalence of microbiota between 3 months and 1

samples (n = 170 taxa, n = 1,545 infants) or gut samples (n = 115 taxa, n = 55

(pBH < 0.001), and vertical lines indicate the effect size thresholds (�7% and 7%) u

at both time points), and late (more prevalent at 1 year) colonizers. The three early a

Hochberg adjusted p values. Also see Table S3.

(B) Graphical legend for the prevalence trajectory coordinate system (PreTCO sy

(C and D) Prevalence trajectory coordinate analyses comparing the change in p

Methods) between healthy infants (nasal n = 1,236, gut n = 421), and those diagnos

breastfed infants (exclusive BM, nasal n = 794, gut n = 271) and those no longer bre

with the largest effect size are labeled for each comparison. The overall prevalen

(E) Nasal and gut microbiota that were significantly later (blue) or earlier (pink) colo

were also found later or earlier in infants (1) exclusively breastfed (nasal n = 794

sampling, (2) without asthma at 3 and 5 years (nasal n = 1,038, gut n = 347) vs.

the right shows the fraction of the 36 nasal and 36 gut taxa found later in infants wit

later compared with earlier colonization was determined using a permutation test.

and without asthma with p < 0.05 are shown. BM, breast milk.

See also Figures S3, S4, S5, and S6 and Tables S3 and S4.
colonization of additional microbes later in the ecosystem estab-

lishment process.

We further assessed gut colonization patterns using shotgun

metagenomic data from the same infants (1,306 infants with

both 3-month and 1-year samples). While we would not expect

identical results from these different sequencing approaches,

we found striking similarities between the microbial colonization

patterns identified in each dataset, with analogous patterns of

taxa categorized as late, persistent, and early colonizers (Fig-

ure S3). This congruence underscored a consistent phenome-

non, emphasizing that the majority of microbiota are introduced

later in the first year (87/115 or 76% late colonizers in the meta-

genomic data and 65/115 or 57% for 16S data). Further, the spe-

cific taxa identified as late colonizers showed consistency

across different data types. For instance, R. gnavus was among

the top three late colonizers in both 16S rRNA gene sequencing

and shotgunmetagenomic data, appearing in 36%of samples at

3months and 95%at 1 year. This alignment between the two da-

tasets reinforces the reliability of our microbial colonization

insights.

We next sought to systematically compare the colonization

patterns of infants with different health phenotypes and early-

life exposures, both at the microbial community level and at

the individual taxa level. To this end, we devised a computational

approach we term ‘‘prevalence trajectories coordinate system’’

(PreTCO system; Figure 3B; STAR Methods). This approach al-

lows us to compare the colonization patterns of different pheno-

typic groups visually and statistically (e.g., exposed vs. unex-

posed or cases vs. controls) both globally, across the entire

microbial community, as well as locally, per taxa. We define

the prevalence trajectories as a two-dimensional cartesian coor-

dinate system with each point representing a taxon and its

coordinates corresponding to the change in prevalence from

3 months to 1 year for two phenotypic groups (STAR Methods;

Figure 3B).

Apremature gain ofmicrobial species is associatedwith
early cessation of breastfeeding and asthma
Using thePreTCOsystem,wefirst compared the colonizationpat-

terns of healthy infants and those diagnosed with preschool

asthma at 3 years of age. We found significant community-wide
ociations with breastfeeding and asthma
year in percentage, for infants with 16S rRNA gene sequence data for nasal

5 infants; McNemar test). The horizontal line indicates the p value threshold

sed to define early (more prevalent at 3 months), persistent (similar prevalence

nd late colonizers with the highest effect sizes are annotated. BHadj, Benjamini-

stem).

revalence of microbiota (1-year to 3-month prevalence in percentage; STAR

edwith asthma at 3 years (nasal n = 80, gut n = 56) (C), and between exclusively

astfed at 3-month sampling (no BM, nasal n = 234, gut n = 79) (D). The four taxa

ce across both time points is shown as point size. Also see Table S4.

nizers in infants without vs. with asthma at 3 years, showing whether these taxa

, gut n = 271) vs. no longer breastfed (nasal n = 234, gut n = 79) at 3-month

with asthma at 3 and 5 years (nasal n = 53, gut n = 35). The annotation bar to

hout asthma that were also found later in the other comparisons. Significance of

Only microbiota with prevalence trajectories that differed between infants with

Cell 187, 5431–5452, September 19, 2024 5437
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differences in both the nasal and gut ecosystems between these

two phenotypic groups (p < 0.001; Figure 3C). Specifically, at the

community level (across all taxa), in both nasal and gut niches,

there was a greater increase in prevalence from 3 months to 1

year in healthy infants (median [IQR] percent change in preva-

lence: 9.0% [1.0%–17.0%] for nasal and 8.8% [4.5%–14.5%]

for gut), compared with infants later diagnosed with asthma

(6.3% [�1.3%–13.1%] for nasal and 1.8% [�1.8%–7.1%] for

gut). This result is further supported by a direct comparison of

the colonization patterns, where healthy infants showed signifi-

cantly higher proportions of late colonizers across both nasal

and gut communities, as compared with infants diagnosed with

preschool asthma (Mann-Whitney U test, nasal p = 0.011, gut

p = 0.006; Figure S4A). Notably, we observed some consistent

patterns for asthma at 5 years, particularly for children with pre-

school asthma diagnosed at 3 years that persisted at 5 years

(Figure S5).

We found similar patterns when comparing infants with

different breastfeeding patterns (Figure 3D). Specifically, at the

community level for both the nasal and gut, there was a greater

increase in prevalence from 3 months to 1 year in exclusively

breastfed infants (p < 0.001, median [IQR] percent change in

prevalence, 8.7% [0.9%–18.3%] for nasal and 10.0% [5.0%–

15.7%] for gut), as compared with infants who were no longer

breastfed (4.3% [�1.7%–12.8%] for nasal and 3.8% [1.3%–

8.9%] for gut). This result is further supported by a direct com-

parison of the colonization patterns, where exclusively breastfed

infants showed significantly higher proportions of late colonizers

and lower proportions of early colonizers across both nasal and

gut communities, as compared with those no longer breastfed at

3 months (Mann-Whitney U test, p < 0.001 for early, persistent,

and late in nasal and early and persistent in gut, and p = 0.003

for late in gut; Figure S4B). We also analyzed infants with mixed

feeding (receiving both human milk and formula), revealing

monotonic trends in colonization patterns across the three

feeding groups (exclusive, partial, and no BM), which indicate

a dose-response relationship (Figure S4B): exclusively breastfed

infants showed the highest percentage of late colonizers; fol-

lowed by those partially breastfed; and finally, those who

stopped breastfeeding before 3 months. The trend for early col-

onizers was the opposite. These results are consistent with our

hypothesis that breastfeeding promotes a paced and gradual

microbial colonization process, across multiple microbial niches

(nasal and gut). In contrast, early breastfeeding cessation may

lead to the premature acquisitionof microbial species.

We next performed a permutation test using the PreTCO sys-

tem, and assigned a p value to each taxon indicating whether its

colonization pattern was significantly different between the two

phenotypic groups (Table S4). Consistent with above results,

more gut and nasal microbial taxa colonized significantly later

in healthy infants (vs. infants diagnosed with asthma) and those

exclusively breastfed (vs. no longer breastfed at 3 months), while

only a few colonized earlier (i.e., 36 later and 5 earlier nasal taxa

in healthy infants; 36 later and 0 earlier gut taxawith p < 0.05; Fig-

ures 3C and 3E; Table S4).

Further, we found a substantial overlap between specific taxa

that exhibit later colonization patterns in exclusively breastfed in-

fants (vs. no longer breastfed at 3 months) and healthy infants
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(vs. diagnosed with preschool asthma at 3 years). We focused

on 36 nasal taxa and 36 gut taxa that were later colonizers in

healthy infants and examined how consistently these coloniza-

tion patterns were associated with breastfeeding. Overall, 47%

(17/36) of the late nasal colonizers and 28% (10/36) of late gut

colonizers were also associated with breastfeeding p < 0.05

(Figures S6B and S6C). For example, in the nasal microbial com-

munity, S. salivarius, a known commensal of the oral and nasal

cavity, had a greater increase in prevalence from 3 months to

1 year (later colonization) in infants exclusively breastfed,

compared with infants no longer breastfed (+47% vs.�6%, per-

mutation test p < 0.001; Figure 3D), and in infants without

asthma, compared with infants diagnosed with asthma at 3

years (+35% vs. +15%, p = 0.004; Figure 3C). Other nasal micro-

biota with late colonization patterns in both breastfeeding and no

asthma groups included Fusobacterium sp., Pantoea sp., and

Leptotrichia sp. (Figure 3E; Table S4). In the gut microbiome,

we see similar patterns for taxa such as R. gnavus and Flavoni-

fractor sp. (Figure 3E; Table S4).

Notably, we observed consistent colonization patterns for

several taxa when we investigated persistent asthma (diagnosed

at 3 years and still present at 5 years). Specifically, nine nasal

taxa and five gut taxa, which represent 25% and 14% of late col-

onizers in healthy infants, respectively, consistently colonized

later in infants who were exclusively breastfed and those who

did not have asthma at 3 years, nor develop it by 5 years. These

nasal taxa included Alloprevotella sp., Fusobacterium sp., Pan-

toea sp., Porphyromonas sp., and Streptobacillus; and gut taxa

included Faecalibacterium sp., Monoglobus sp., and Tyzzerella

sp. (Figures 3E and S6B). These results support our hypothesis

that exclusive breastfeeding until at least 3 months selectively

paces the colonization of specific microbiota in early life that

are associated with infant health.54

Pangenome analysis reveals a premature gain of
microbial functions associated with early cessation of
breastfeeding and asthma
To unravel the underlying microbial mechanisms contributing to

the protective effects of breastfeeding against asthma, we

sought to move beyond microbiota composition and explore

the functional potential of the implicated gut microbes. To

achieve this, we analyzed 2,846 longitudinal shotgun metage-

nomic samples from the same infants (1,306 infants with both

3-month and 1-year samples) and a subset of corresponding

metabolomics samples (529 infants with both 3-month and

1-year samples). We assessed the functional potential of the mi-

crobial communities under scrutiny using their pangenomes (i.e.,

the entire set of genes from all strains within a clade). Leveraging

both the evolutionary genealogy of genes: non-supervised

orthologous groups (EggNOG) database55 and the Enzyme

Commission (EC) classification scheme, we extracted 2,229

unique EggNOG functional annotations and 1,110 EC numbers

associated with 73 species present in at least 10% of the total

2,846 samples (STAR Methods). We focused on eight species

based on our 16S rRNA gene sequence results, specifically,

those identified as later colonizers in infants who did not develop

asthma (p < 0.05, Figure 3E), which had species-level identifica-

tion and were found in the EC and EggNOG annotations:
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R. gnavus (401 EC and 940 EggNOG), Bifidobacterium bifidum

(419 and 797 functions), Bifidobacterium longum (B. longum;

481 and 713 functions), Sellimonas intestinalis (S. intestinalis;

305 and 128 functions), Eubacteriu hallii (487 and 574 functions),

Eubacterium eligens (423 and 95 functions), Coprobacillus cate-

niformis (C. cateniformis; 288 and 21 functions), and Parabacter-

oides merdae (P. merdae; 360 and 15 functions). Of note, we hy-

pothesize that the functions attributed to B. longum are not

associated with B. longum infantis, which consumes HMOs,

but rather with other B. longum subspecies that do not uti-

lize HMOs.

We next calculated a complementary type of ‘‘functional tra-

jectories,’’ describing the prevalence of functions assigned to

these species. In this case, applying the PreTCO system analysis

would reveal changes in functional prevalence, capturing the ge-

netic diversity of the species, as represented by their pange-

nomes. This approach can potentially uncover functions of

different subspecies or strains within the same clade (Figure S8).

In this analysis we found that both exclusive breastfeeding at

3 months and the absence of asthma at 3 years exhibited a

robust association with a delayed introduction of functions in

these species (p < 0.001, Figures 4A and S7A). Examining

each species separately, this pattern held true for all except

one using EggNOG and five out of eight species using EC

(EggNOG p < 0.05 for all species except P. merdae; EC

p < 0.05 except P. merdae, C. cateniformis, and S. intestinalis;

Figures 4B and S7B). P. merdae and C. cateniformis had less

than 10 functional annotations in the EC data, limiting statistical

power for our analysis.

Premature R. gnavus acquisition, along with tryptophan
biosynthesis and its metabolites, links early
breastfeeding cessation to asthma development
To identify and attribute microbial mechanisms underlying the

protective effects of breastfeeding against asthma, we looked

for species exhibiting overlapping late functions across these

two phenotypes (i.e., exclusive breastfeeding and no asthma).

Despite finding hundreds of functions temporally correlated

with each phenotype across our eight species of interest (Fig-

ure 4), only a subset reached statistical significance (386 EC an-

notations for breastfeeding, 12 for asthma). Of these, only 8 EC

annotations overlapped between both phenotypes (Figure 5A),

with 22 overlapping late functions identified using EggNOG

(Figure S7). Interestingly, all overlapping late functions originated

from R. gnavus, indicating this species is a pivotal microbe link-

ing breastfeeding with asthma. We therefore focused our atten-

tion on this microbe (Figure 5A).
Figure 4. Timing of acquiring microbial functions in the first year of life

(A) PreTCO system analyses comparing the change in prevalence of enzyme-c

(1-year to 3-month prevalence in percentage; STAR Methods) between (1) infants

202); and (2) healthy infants (n = 1,075), and those later diagnosed with asthma at

the key to the right, differentiated by color. The median (IQR) change in prevalenc

using a Mann-Whitney U test. The overall prevalence across both time points is

(B) Percent change in prevalence of EC orthologs, stratified by species. Significanc

function from the focal species. As an effect size, themedian of the difference in th

for this test are the number of functions (differs per species, as annotated in the p

size sensitivity analysis (see Figure S7).

See also Figure S7.
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First, we examined R. gnavus prevalence over time using

the shotgun metagenomics data. We found that R. gnavus ex-

hibited a delayed colonization pattern in exclusively breastfed

infants (1-year to 3-month prevalence: 67.2% increase),

compared with infants who experienced early cessation of

breastfeeding (37.6%, p < 0.001) and in infants who did not

develop asthma, compared with infants who did (59.8% vs.

49.4%, p = 0.042; Figure S8B). At the functional level, we simi-

larly observed a larger temporal increase (from 3 months to 1

year) in the prevalence of total functions linked to R. gnavus in

exclusively breastfed infants and those who did not develop

asthma (p < 0.001, Figure 4B): across all EC functions linked to

R. gnavus, the median increase in the presence of a function

was 54.4% (IQR [51.5%–56.4%]) for exclusively breastfed in-

fants, compared with 31.7% (IQR [30.2%–33.7%)] for infants

who experienced early cessation of breastfeeding. Similarly,

the median increase was 50.4% (IQR [48.3%–52.3%]) for infants

who did not develop asthma, compared with 40.5% (IQR

[39.2%–43.0%]) for infants who developed asthma.

Next, weexamined the delayed functions inR. gnavus. Remark-

ably, all five enzymes required for tryptophan biosynthesis56 (i.e.,

4.1.3.27anthranilate synthase, 2.4.2.18 anthranilate phosphoribo-

syltransferase, 5.3.1.24 phosphoribosylanthranilate isomerase,

4.1.1.48 indole-3-glycerol phosphate synthase, and 4.2.1.20

tryptophan synthase) were introduced significantly later in exclu-

sively breastfed infants (p < 0.001 for all comparisons). Notably,

these five enzymes were also delayed in infants without

asthma, although only one (anthranilate phosphoribosyltransfer-

ase [AnPRT]; catalyzing the second step in tryptophan biosyn-

thesis) reached significance andwas among the eight overlapping

functions between both phenotypes (Figure 5B). Other enzymes

represented among these eight overlapping functions include

3.5.1.2 (glutaminase, p = 0.008) and 3.2.1.22 (alpha-galactosi-

dase, p = 0.004) (Figures 5B and S8B). Notably, these eight func-

tions attributed to R. gnavus exhibit a high correlation with its

overall prevalence trajectory, achieving a median Spearman cor-

relation of 0.72. In contrast, other functions of R. gnavus, which

are not delayed in breastfed infants, show a median correlation

of only 0.19 (Figure S8A; STAR Methods). These results indicate

a functional diversity within R. gnavusmembers that may be influ-

enced by early-life factors such as breastfeeding. To corroborate

these results and move from suggestive (i.e., predicted functional

potential) to conclusive evidence (i.e., measured functional out-

puts), we analyzed microbial metabolites in the same stool sam-

ples, focusing on tryptophan biosynthesis and metabolism (Fig-

ure 5C). As anticipated, in exclusively breastfed infants, both

tryptophan and its metabolites, tryptamine and indole, exhibited
is associated with breastfeeding and asthma

atalyzed reaction pathways, based on EC numbers from metagenomic data

exclusively breastfed (n = 658) and those no longer breastfed at 3 months (n =

3 years (n = 79). Each point represents an EC annotation from the taxa listed in

e of each group is shown on the group’s axis. Overall significance was tested

shown as point size. Replicated for EggNOG orthologs (see Figure S7).

e was tested using aWilcoxon signed-rank test. Each point represents a single

e trajectorymeasure (percentage change in prevalence) is shown. Sample sizes

lot). *pBH < 0.05; **pBH < 0.001. Replicated for EggNOG orthologs and sample



Figure 5. Premature acquisition of specific R. gnavus functions are linked to early breastfeeding cessation, increased asthma risk, and

tryptophan metabolite variations
(A) Overlap in the EC annotations stratified by species introduced significantly later in exclusively breastfed infants (exclusive BM) compared with those no longer

breastfed at 3 months sampling (no BM), and later in infants who did not develop asthma (no asthma) compared with those who did at 3 years (p < 0.01).

Significance of individual pathway was tested using a permutation test.

(B) Percentage change in prevalence between 3 months and 1 year within each phenotype, for 12 EC that were significantly later in infants who did not develop

asthma at 3 years (p < 0.01, permutation test). Only showing the percentage change in prevalence where p < 0.01 (gray indicates p > 0.01). EC names: 2.4.2.18,

anthranilate phosphoribosyltransferase; 1.11.1.1, NADH peroxidase; 3.2.1.22, alpha-galactosidase; 2.7.7.7, DNA-directed DNA polymerase; 5.99.1.2, DNA

topoisomerase; 3.5.1.2, glutaminase; 1.3.1.76, precorrin-2 dehydrogenase; 3.5.1.24, choloylglycine hydrolase; 1.1.1.38, malate dehydrogenase; 1.4.1.16, di-

aminopimelate dehydrogenase; 2.1.1.144, trans-aconitate 2-methyltransferase; 2.7.8.26, cobalamin synthase.

(C) Comparing normalized concentrations of tryptophan, tryptamine, and indole over time (3months and 1 year) among exclusively breastfed infants (n = 127) and

those no longer breastfed at 3-month sampling (n = 140) and healthy infants (n = 393) compared with those who develop asthma at 3 years (n = 34).

(legend continued on next page)
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a significant increase at 1 year compared with 3 months, aligning

with metagenomics results (p < 0.001 for tryptophan and trypt-

amine and 0.04 for indole). This pattern was similarly observed

in healthy infants who did not develop asthma (p < 0.001 for tryp-

tophan and tryptamine and 0.003 for indole). In contrast, no tem-

poral changes in tryptophan, tryptamine, or indole levels were

observed in infants who experienced early cessation of breast-

feeding and those diagnosed with preschool asthma.

Early cessation of breastfeeding and the introduction of
infant formula trigger a weaning response
characterized by compositional and functional
microbiome changes
Next, to better understand the impact of early weaning from hu-

man milk and the introduction of infant formula on the gut micro-

biome, we examined the functional aspects of these changes. In

mice, the transition from nursing to solid foods initiates a robust

immune response, marked by an increase in microbial coloniza-

tion and the production of short-chain fatty acids (SCFAs), which

are crucial for developing gut homeostasis and robust immune

maturation.57,58 Termed the ‘‘weaning reaction,’’ this phenome-

non has not yet been rigorously demonstrated in humans. Here,

we wished to examine wheather a similar response is observed

in response to weaning from human milk and the introduction of

infant formula. We analyzed SCFAs in stool at 3 months (N = 392

infants) and observed significantly higher levels in infants no

longer breastfed, compared with those exclusively breastfed

(Figure 5D; p < 0.001 for butyrate, propionate, and valerate

and 0.07 for acetate). Moreover, when examining temporal

changes in these SCFAs between 3 months and 1 year, we de-

tected significant temporal increases among exclusively

breastfed infants (Figure 5D; N = 340 infants, p < 0.001 for buty-

rate, propionate, and valerate), whereas this distinctive pattern

was absent in infants who discontinued breastfeeding before

3 months (Figure 5D). These results suggest a potential early

‘‘weaning response,’’ reflected in an increase in microbial pro-

duction of SCFAs, in infants who transition from human milk to

formula before 3 months of age.

Microbiome colonization patterns and human milk
composition in the first year of life accurately predict
asthma at 3 years
To further establish the health implications of microbial coloniza-

tion patterns and breastfeeding (including exposure to specific

human milk components) in the first year of life, we next evalu-

ated their ability to predict asthma at 3 years. We trained a ma-

chine learning model using gradient-boosted decision trees to

differentiate between children diagnosed with asthma (N = 80

children for nasal and 56 for gut datasets) and healthy controls

(N = 1,327 for nasal and 479 for gut). We evaluated the prediction

accuracy using 10-fold cross-validation (i.e., held-out subjects

unseen during training; STAR Methods). The composition of
(D) Differences in SCFAs (butyrate, propionate, valerate, and acetic acid) between

sampling (n = 134), suggesting an early weaning reaction in the latter group; tested

and 1 year within exclusively breastfed infants (n = 63) and those no longer breastf

data at both 3 months and 1 year. *pBH < 0.05; **pBH < 0.001.

See also Figure S8.
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either the nasal or gutmicrobiome at a single timepoint (3months

or 1 year) had limited predictive power (average area under the

receiver operating characteristic curve [auROC] values ranging

from 0.56 to 0.65; Figure 6A, left). However, when we used the

microbiota trajectories, the predictive accuracy was significantly

increased (nasal: auROC = 0.79, 95% CI [0.70, 0.89], gut:

auROC = 0.83, 95% CI [0.72, 0.93]; Figure 6A). When using the

microbiome trajectories of the nasal and gut combined, the pre-

dictive accuracy was even higher (auROC = 0.90, 95% CI [0.80,

0.99]; Figure 6A). Human milk components (oligosaccharides,

fatty acids, and immune components; n = 632) had some predic-

tive power on their own (auROC = 0.71, 95% CI [0.55, 0.86]; Fig-

ure 6A), and they slightly improved the performance of micro-

biota trajectory models when these datasets were combined

(Figure 6A, right). The highest model performance of all was ob-

tained from using gut and nasal trajectories along with milk com-

ponents (auROC = 0.93, 95% CI [0.86, 0.99]; Figure 6A). These

accurate predictions of preschool asthma demonstrate the

importance of microbial colonization in the first year of life, indi-

cate a role for human milk components, and suggest utility for

early risk stratification.

To elucidate which microbial taxa and human milk compo-

nents drive the prediction accuracy of asthma at 3 years, we

ranked the contribution of these features in our machine learning

models. We found that microbes exhibiting later colonization

in healthy infants, discovered in previous analyses, are the

ones contributing the most to predicting asthma at 3 years

(Figures 6B and 6C). Specifically, we found that 9 out of the

top 10 contributing microbial features were also found in the

PreTCO analysis (i.e., S. salivarius, Dolosigranulum sp., Coryne-

bacterium sp., Neisseriaceae sp., Prevotella sp., Fusobacterium

sp., Moraxella sp., Leptotrichia sp., and Alloprevotella sp. in

nasal microbiota; Figure 6B). In terms of human milk compo-

nents contributing to prediction accuracy, these included three

omega 6 polyunsaturated fatty acids (C22:4n6, C20:3n6, and

C18:4n6), saturated fatty acid C24:0, immunoglobulin A (IgA),

and the HMOs lacto-N-neotetraose (LNnT) and lactose-N-hex-

aose (LNH) (Figure 6B).

Microbial colonization is a key mechanism mediating
the protective effect of breastfeeding against asthma
We have shown thus far that nasal and gut colonization patterns

are affected by breastfeeding and are strong predictors of pre-

school asthma (Figures 2, 3, 4, 5, and 6). We further confirmed

that these findings hold true after adjusting for potential con-

founders and used statistical methods to evaluate causality

and mediation (Figure 7).

Next, we examined whether delayed microbial colonization

patterns underlie the protective effect of breastfeeding against

asthma later in life, using a multivariate mediation analysis

and structural equation modeling (SEM) among infants who had

both gut and nasal longitudinal data available (n = 341; 34
exclusively breastfed infants (n = 69) and those no longer breastfed at 3-month

usingMann-Whitney U test. Also showing change in SCFAs between 3months

ed at 3months (n = 112); tested usingWilcoxon signed-rank test for infants with
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with asthma at 3 years, 307 healthy infants). For these analyses,

indicators of the infants’ nasal and gut microbiota colonization

that were significantly associated with both breastfeeding

and asthma in univariate analyses (PreTCO system for taxa and

Mann-Whitney U test for summary metrics) were selected and

modeled as latent variables (Figure S6A). In our final model,

adjusted for potential confounders, we found that exclusive

breastfeeding at 3 months was directly correlated with delayed

(later) colonization of nasal (beta = 0.175, p = 0.003) and gut

(beta = 0.224, p < 0.001) microbiota (Figure 7B). Specifically,

exclusive breastfeeding was correlated with a greater increase

in microbiota richness and diversity from 3 months to 1 year, a

higher frequency of late colonizers, and delayed colonization of

the 17 nasal taxa and 10 gut taxa included in the model. These

specific nasal and gut microbiota trajectories were also corre-

lated with a lower incidence of asthma at 3 years (nasal, beta =

�0.284, p < 0.001; gut, beta = �0.274, p < 0.001).

Importantly, we found that the protective association of

breastfeeding exclusivity with reduced asthma at 3 years was

almost fully mediated by microbiota trajectories (82.8% media-

tion) with similar contributions from the nasal and gut microbiota

(nasal: 37.3%, p = 0.019; gut: 45.5%, p = 0.013; Figure 7B;

Table S6). Notably, there was no remaining direct effect of

breastfeeding exclusivity on asthma in this mediation model

(p = 0.797; Figure 7B; Table S6), indicating that regulation of mi-

crobiome development is a primary mechanism through which

breastfeeding limits asthma development.

Finally, we performed a sensitivity analysis including infants

with either nasal or gut samples (allowing for larger sample sizes)

and found consistent results (Figure S9; Table S6). All models,

including the combined nasal-gut model, had good model fit

as indicated by a comparative fit index (CFI) > 0.9, root-mean-

square error of approximation (RMSEA) < 0.05, and standardized

root-mean residuals (SRMRs) < 0.08 (Table S7). Collectively,

these analyses consistently show that, independent of the

many covariates considered, nasal and gut microbiota trajec-

tories, when considered alone or in combination, mediate the

protective association of breastfeeding in early life on asthma

at 3 years of age.

DISCUSSION

The associations of breastfeeding with microbiome composition

and respiratory health have been extensively studied. However,

they are rarely examined together, and research mostly focuses

on gut microbiota and typically stops short of identifying mech-

anisms underlying these associations. In this work involving over
Figure 6. High prediction accuracy for asthma at 3 years based on

components

Amachine learningmodel, gradient-boosted decision trees, trained to differentiate

and 56 for gut) and healthy controls (N = 1,327 for nasal and 479 for gut). Predicti

(A) Receiver operating characteristic curves using different combinations of pred

(B) Feature importance plots for the ‘‘nasal microbiome trajectories’’ (left) and ‘‘

(green curves in A), colored by phylum; circle size corresponds to the prevalence

(C) Feature importance plots for the ‘‘gut microbiome trajectories’’ (left) and ‘‘gu

curves in A), colored by phylum; circle size corresponds to the prevalence of this

See also Table S5.
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2,000 children, we provide evidence that the regulation of

nasal and gut microbiome development serves as a key mecha-

nism through which breastfeeding mitigates the development

of asthma. We find that infants who undergo early cessation

of breastfeeding (before 3 months), relying solely on formula

feeding, experience an accelerated acquisition of microbial

species, functions, and microbial-derived metabolites. These

changes mirror the weaning response typically observed around

6 months of age during the natural shift from exclusive breast-

feeding to solid food introduction but are happening prematurely

at a much younger age. Remarkably, similar patterns of prema-

ture acquisition of thesemicrobial species and functions are also

observed in infants who later develop preschool asthma and

appear to causally mediate the relationship between early wean-

ing and respiratory health. Specifically in the gut microbiota, we

observe an accelerated gain of microbial species, including

R. gnavus, alongside functions andmetabolites related to trypto-

phan biosynthesis, which have been previously linked to immune

modulation and asthma.59–61 Finally, we identified human milk

components that enhanced our microbiota-based prediction

models for asthma—including IgA, which is known to regulate

microbial colonization and support microbial diversity.62

A critical time window for breastfeeding cessation
Inmice, the transition from nursing to solid foods is characterized

by a vigorous immune response involving a surge in microbial

colonization and microbial production of SCFAs, which are

essential for the development of gut homeostasis and robust

immune maturation, affecting GTPase-activating protein (GAP)

opening and immune programming.57,58 This phenomenon,

termed the weaning reaction, has not yet been rigorously

demonstrated in human infants and may occur differently, given

the inter-species differences inmicrobial taxa and SCFA levels at

various stages of early life. Here, we examined whether a similar

microbial metabolic response occurs in human infants when

breastfeeding is ceased early and replaced with infant formula

before 3 months of age. Our findings suggest that the weaning

response may not solely be induced by the introduction of solid

foods but also by early discontinuation of breastfeeding and

exclusive reliance on formula feeding. In support of this, our

metagenomics and metabolomics analyses demonstrate that

the changes in microbial colonization and functional capacities

identified in infants with early breastfeeding cessation coincide

with increased levels of SCFAs, similar to the programmed

weaning reaction identified in mice.

Recent research has demonstrated that postponing the wean-

ing reaction is linked to an elevated risk of allergic inflammation
nasal and gut microbiome colonization patterns and human milk

between children whowere diagnosedwith asthma at 3 years (N = 80 for nasal

on accuracy was evaluated by using held-out samples unused during training.

ictor variables as shown (see Table S5 for true vs. predicted values).

nasal trajectories with milk components’’ (right) models of asthma prediction

of this feature in the data.

t trajectories with milk components’’ (right) models of asthma prediction (red

feature in the data.
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and other immune pathologies.40 Here, we reveal that an exces-

sively earlyweaning reaction, triggered by the premature discon-

tinuation of breastfeeding, may also heighten the risk of asthma.

Thus, together with existing evidence, our new results suggest

that weaning too early or too late can be equally detrimental to

microbiome and immune development.63 Further, our findings

emphasize the importance of longitudinal analyses during dy-

namic periods of microbiome development, as our trajectory

metrics (change over time and early/late classifications) were

far more predictive of asthma than any cross-sectional measure.

These results call for additional research with more frequent lon-

gitudinal measures of infant feeding and microbiome function

throughout the weaning process to precisely define the optimal

timing for this important process. Such research could inform

potential updates to global recommendations for breastfeeding

and weaning,64 which are largely based on decades-old evi-

dence that pre-date the modern era of microbiome research.

Premature R. gnavus acquisition links early
breastfeeding cessation to asthma development
By examining the pangenome of the gut microbial communities

in these infants, we identified members ofR. gnavus as key time-

dependent commensals—meaning that their beneficial role de-

pends on the timing of their acquisition. Later colonization by

members of R. gnavus (after 3 months) was observed in exclu-

sively breastfed infants and those who did not develop asthma.

This aligns with previous research showing that early R. gnavus

colonization of the infant gut at 2 months of age is associated

with allergic disease,65 yet its presence at 6 months, alongside

other mucin-degrading species, has been associated with

reduced risk of allergic disease.66 Evidence in mice suggests

the mechanism for the protective effect of R. gnavus is linked

to modulation of the T helper 2 (Th2) immune response via

SCFA-stimulated signaling and Treg differentiation.67

Mucin-degrading species such as R. gnavus use alpha-galac-

tosidase to break down non-digestible galacto-oligosaccha-

rides, abundant in many non-human-milk dietary sources, and

host mucin. The ability to ferment these oligosaccharides into

SCFAs enables species like R. gnavus to establish themselves

in the infant gut during the introduction of non-human-milk

food sources.68,69 Indeed, we found that the alpha-galactosi-

dase enzyme inR. gnavuswas introduced early (before 3months)
Figure 7. Nasal and gut colonization patterns are associated with brea

the association between breastfeeding exclusivity and asthma

(A) Standardized beta-estimates with 95% confidence intervals for unadjusted

crobiota trajectory latent variable and (1) breastfeeding (nasal: exclusive n = 794,

and (2) asthma (nasal: healthy n = 1,236, asthma n = 80; gut: healthy n = 421, a

models: antibiotics in the first year of life, older siblings, pre-natal smoke, birth

3 months, and infant age at 3-month sampling. Variable selection for latent con

breastfeeding (STAR Methods). *p < 0.05, **p < 0.001.

(B) A structural equation model showing the mediating effects of nasal and gut m

3months and asthma at 3 years. Standardized beta-coefficients are reported, adju

Positive associations with microbiota trajectories indicate delayed microbiota co

Variable selection for latent constructs is done similarly to (A) (STAR Methods). W

asthma and 307 infants without asthma diagnosed at 3 years), and breastfeedin

3-month sampling). See Table S6 and Figure S9 for details, including both standa

models.

See also Figure S9 and Tables S6 and S7.
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in infants who underwent early cessation of breastfeeding, as

well as those who developed asthma, highlighting the potential

importance of appropriately timed increased SCFA production

during the critical weaning period.

Another enzyme of R. gnavus members that was introduced

later with exclusive breastfeeding and non-asthma was AnPRT,

which is involved in tryptophan biosynthesis.70 We further found

‘‘prematurely elevated’’ levels of tryptophan and its metabolites

in infants no longer breastfed at 3 months and those who develop

asthma. Tryptophan metabolites have known associations with

asthma,71 and D-tryptophan produced by probiotic bacteria has

been associated with gut microbial diversity and explored as a

preventative pharmaceutical against allergic diseases including

asthma.72 Moreover, tryptophan metabolites including indole

and tryptamine, produced by microbes residing in the gut,61 are

known to activate the aryl hydrocarbon receptor (AhR) that has

emerged as a crucial player in asthma control, responding to envi-

ronmental molecules and endogenous or dietary metabolites

while regulating innate and adaptive immune responses.73,74

Together, our findings suggest that exclusive breastfeeding limits

colonization by members of R. gnavus until non-human-milk food

sources are introduced, at which time thesemicrobes can flourish

and begin producing SCFAs and take part in tryptophan biosyn-

thesis, which in turn stimulate Treg differentiation and activate

the AhR. Disrupting the timing or sequence of these events leads

to immune perturbation and predisposition to asthma.

Notably, the delayed acquisition of functions attributable to

R. gnavus did not perfectly parallel the acquisition of R. gnavus

species colonization, suggesting the importance of strain-spe-

cific functions. Indeed, previous research shows that the capac-

ity of R. gnavus to metabolize mucin glycans and produce

propionate is strain dependent.68 In addition, reference data-

base limitations may have led to over-attribution of certain func-

tions to R. gnavus alone, where other microbes could also be

contributing (e.g., infant gut microbiota such as Escherichia

coli, Clostridium sporogenes, and Lactobacillus spp. may also

contribute to tryptophan biosynthesis).75

Nasal (in addition to gut) microbiota is impacted by early
breastfeeding cessation and linked to asthma
Previous research has focused on the weaning reaction phenom-

enon only in the context of the gut microbiota; however, we
stfeeding exclusivity and asthma in multivariate models and mediate

and adjusted regression models for associations between a nasal or gut mi-

partial n = 517, no BM =234; gut: exclusive n = 271, partial = 205, no BM = 79),

sthma n = 56). The following potential confounders were included in adjusted

mode, maternal asthma, study center, R/E virus at 1 year, colds in the first

structs was informed based on univariate associations with both asthma and

icrobiota trajectories on the association between breastfeeding exclusivity at

sted for all covariates listed, with p values denoted by *p < 0.05 and **p < 0.001.

lonization (later), whereas negative associations indicate earlier colonization.

e included infants with data on both nasal and gut microbiota (34 infants with

g exclusivity was an ordered variable (exclusive, partial, or no human milk at

rdized and unstandardized estimates, and separate nasal and gut microbiota
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hypothesize that a similar reaction to early breastfeeding cessa-

tion occurs in other body sites, such as the respiratory tractmicro-

biome. In support of this, we identified similar patterns of an accel-

erated acquisition of nasal microbiota in infants who underwent

early cessation of breastfeeding and those who later developed

asthma. In the nasal microbiome, specific taxa that followed this

pattern includedS. salivarius, Lactobacillus delbrueckii, and Fuso-

bacterium. All were found to be associated with respiratory health

and disease in previous studies; however, their order of arrival to

the nasal microbial niche was not rigorously examined. Both Fu-

sobacterium and Lactobacillus have been associatedwith healthy

respiratory phenotypes in previous research.76,77 S. salivarius is

particularly intriguing as it is being considered as a bacteriother-

apy in the form of a nasal spray for treating recurrent respiratory

infections.78,79 In terms of early colonization, we found that in

both the nasal and gut niches, Staphylococcus spp. were able

to colonize the earlier (3 months) but generally not the more

mature community. This corroborates previous research showing

that Staphylococcus spp. are generally early colonizers in both

nasal and gut niches.30,80We further found evidence that the early

colonization of the nasal niche by specific taxa, such as Acineto-

bacter sp., may protect against asthma. Interestingly, previous

research suggests thatAcinetobacter is an abundant genus in hu-

manmilk,81,82 and its abundance in the nasal niche at 6 months of

age may be beneficial and linked to the childhood allergy gap be-

tween distinct populations.83

Overall, our findings indicate that breastfeeding functions as a

pacemaker, orchestrating the colonization process of microbial

functions and species. Early cessation of breastfeeding seems

to accelerate the premature acquisition of microbial species

and functions, potentially increasing the risk of respiratory

illness. Our robust findings across two body sites suggest a

conserved mechanism and highlight the importance of a gradual

succession toward a richer microbial community facilitated by

breastfeeding. This gradual colonization, eventually leading to

an appropriately timed weaning reaction, may be important to

prevent an inappropriate response of the untrained immune sys-

tem to microbiota or microbial compounds (e.g., immunogenic

SCFAs), as opposed to the more fine-tuned response of a prop-

erly trained immune system later in life. The gradual co-adapta-

tion of the immune system andmicrobial community is likely crit-

ical for the eventual acceptance of a larger diversity of microbial

taxa as commensals later in life.

Strengths and limitations
Strengths of this study include our large sample size, use of hu-

man milk composition, shotgun metagenomics and metabolo-

mics data, and access to rich longitudinal metadata and clinical

asthma diagnoses from the general population of the CHILD

cohort. We also had microbiome data from multiple niches at

multiple time points, which allowed us to identify temporal pat-

terns that were conserved across niches. Further, a defining

strength of this study was our robust analytical approach that

included stepwise computational analyses (from associations,

to predictions, to informed causal inference), and the PreTCO

system to assess colonization patterns at global and local

scales. This computational approach utilized prevalence data,

which allowed us to overcome challenges of compositionality
and sparsity in our microbiome data. A main limitation of this

study is its observational design, although we have identified

specific microbiota that could be targeted for future mechanistic

studies and biotherapeutic applications. Further, we acknowl-

edge that R. gnavus may not be the only microbe capable of

SCFAs production and tryptophan biosynthesis, and our find-

ings are limited by the existing functional databases. Addition-

ally, our nasal samples were not analyzed using shotgun meta-

genomic sequencing (owing to the very low biomass of these

samples), therefore our machine learning and causal inference

results focus on 16S rRNA sequence data partially for compara-

bility between niches. Our human milk analyses were limited to a

subset of components (long-chain fatty acids, HMOs, and a few

bioactive proteins), and we acknowledge that other components

could also be important (e.g., nutrients, metabolites, other pro-

teins, or cells). Finally, we acknowledge that asthma is a complex

and heterogeneous disease that is particularly challenging to di-

agnose in early childhood and that further research is warranted

to understand the nature and persistence of our findings beyond

5 years of age.

Conclusions and future directions
We found evidence that microbial colonization patterns, across

the nasal and gut niches, mediate the protective effect of breast-

feeding on respiratory health. Specifically, we found that a paced

colonization of specificmicrobiota mediated the effect of breast-

feeding on preventing asthma later in childhood and implicated

the production of specific microbial metabolites. Conversely, in-

fants who undergo early cessation of breastfeeding (before or at

3 months) experience an accelerated acquisition of microbial

species, functions, and metabolites. Thus, our results suggest

that microbiome-targeted disease prevention strategies should

not simply focus on supplementing with specific bacteria but

rather aim to support appropriately timed beneficial microbiota

community development in early life. Further research is needed

to precisely define this critical time window and to develop hu-

man-milk-inspired and microbiome-targeted interventions for

asthma prevention.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
Nasal and gutmicrobiomedata have beendeposited at NCBIBioProjects: PRJNA657821 (infant stool 16S data), PRJNA1127065 (nasal

swab 16S data), and PRJNA838575 (shotgun metagenomic data). The metabolic profile data used in this study are available in

MetaboLights: MTBLS7919. Datasets are publicly available as of the date of publication. Accession numbers are also listed in the

key resources table. Other CHILD Study data, including humanmilk composition and participantmetadata, are available by registration

to the CHILD database (https://childstudy.ca/childdb/) and the submission of a formal request. The analysis pipeline is deposited in the

GitHub repository (https://github.com/Shenhav-Lab/Microbial-colonization-programs). Any additional information required to reana-

lyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study population
Womenwith singleton pregnancies were enrolled in the CHILD cohort study between 2008 and 2012 (n=3621) and remained eligible if

they delivered a healthy infant >35weeks gestation (n=3455).99 Nasal swabs and infant stool were collected at a home visit scheduled

for age 3months and additional samples were collected at a clinic visit scheduled for age 1 year. Mothers gave written informed con-

sent in accordance with the Declaration of Helsinki. The protocols were approved by the Human Research Ethics Boards at McMas-

ter University, the Hospital for Sick Children, and the Universities of Manitoba, Alberta, and British Columbia. A total of 3326 partic-

ipants contributed nasal swab samples, and from these, a representative set of 2725 3-month and 2336 1-year samples were

selected for microbiome analysis (Figure S1). Gut microbiota 16S rRNA gene data were available for an asthma-enriched subset

of 857 and 879 infants at 3-months and 1-year, respectively.53 Gender was not captured among mothers or infants in the early years

of the CHILD cohort, from which our data originate. Ongoing follow-up of this longitudinal cohort has been designed to capture this

information in the future.

Early-life exposures
Infant feeding was reported by standardized questionnaires at 3, 6, and 12 months. At the time of milk sample collection, breastmilk

(BM) feeding status was divided into 3 groups: ‘Exclusive BM’, ‘Partial BM’ and ‘No BM’ at 3 months of age (time of sample collection).

Infants in the Exclusive BMgroup received only their mother’s BM frombirth until at least the time of sample collection (N = 794). Infants

in the ‘Partial BM’ groupwere fed amixture of BMand formula at the time of sample collection (N = 517); the infants in the ‘NoBM’ group

were breastfed to some extent in their first months of life, prior to the sample collection, but were no longer receiving BM at the time of

sample collection (3 months; N = 234). Infants who were never breastfed were excluded due to small sample size (N=55).

Unless specified otherwise, analyses of breastfeeding at 3 months compared infants exclusively breastfed to those no longer

breastfed at sampling. Human milk feeding at 1 year sample collection was classified as ‘‘Yes’’ (continuation of any human milk

feeding) or ‘‘No’’ (ceased breastfeeding prior to 1 year sampling). Maternal age, infant sex, birth weight, gestational age, birth

mode (Cesarean section or vaginal delivery), parity (any older siblings, yes vs. no), and intrapartum antibiotic use were documented

from hospital records. Any colds and any fever from 0 to 3 months and from 6 to 12 months, any antibiotics in the first year of life,

daycare (inferred based on the child regularly going to a location away from home), prenatal smoke exposure (second hand and

maternal smoking), maternal ethnicity (4 category variable: Asian, Caucasian, First Nations, Other), and maternal asthma (Yes or

No asthma ever) were reported by standardized questionnaire. Maternal atopywas diagnosed by skin prick test at 1 year postpartum.

If the mother reported recalling her weight at the time, they became pregnant, maternal BMI was calculated using recalled weight,

otherwise the mothers weight measured in the clinic at 1 year postpartum was used, or if available, prenatal records were used.

Maternal height was measured in the clinic at 1 year postpartum.

Respiratory phenotypes
At ages 1, 3 and 5 years, the child was examined for evidence of asthma by clinical assessment as described previously.99 Caregivers

also completed questions from the International Study of Asthma and Allergies in Childhood (ISAAC) at these assessments. At each

assessment, the child is examined by an expert physician for evidence of atopic dermatitis, allergic rhinitis, and asthma. Allergy skin

prick tests and general anthropometrics are performed at all assessments. Blood pressure, waist circumference and skinfold thick-

ness are measured at 3 and 5 years. Spirometry is performed in all children at age 5 years.

Sample collection
Collection of infant nasal swab, stool andmilk samples has been described previously.52,100 Briefly, during a home visit scheduled for

3-months of age, a sterile swab was inserted 3 mm into the infant’s nostril and rotated. This was done in both nares using one swab.

The swab was then placed in a sterile vial containing 3mL universal transport medium. A second nasal swab sample was collected in

a similar aseptic manner at the clinical assessment at 1 year of age. On the same days as the nasal swab collection, a soiled diaper

was provided, which was refrigerated at home for up to 24 hours before being collected and processed by study staff.100 Each
e2 Cell 187, 5431–5452.e1–e7, September 19, 2024
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mother also provided one milk sample at this 3-month home visit, which was a mix of foremilk and hindmilk from multiple feeding

during a 24-hour period collected as described previously.52

METHOD DETAILS

Milk composition analyses
Humanmilk oligosaccharides weremeasured using high-performance liquid chromatographywith fluorescence detection at theUni-

versity of California, San Diego, as previously described.101 Fatty acids were measured by gas chromatography at the University of

Alberta, as previously described.102,103 Milk bioactive proteins were analyzed as follows: samples were thawed on ice and lipids

removed by centrifugation at 10,000 g for 30 minutes at 4�C. The remaining whey was then centrifuged at 1,000 g for 10 minutes

at 4�C. Milk bioactive proteins were selected based on the detectable immune factors present in human milk.104 For analysis of

milk IgA (E-Bioscience 88-50600-88), soluble TLR2 (sTLR2), TGF-b1, and TGF-b2, Sandwich ELISA was used(R and D systems). Re-

maining proteins were analyzed on a Luminex 200 system using Luminex assay multianalyte kits (R&D Systems LXSSAHM;

ThermoFisher PPX-09 and MX2979v). Milk samples were randomized over the analysis plates, and the bioactive proteins below

the lower limit of detection (LLOD) were excluded. Interplate variation was adjusted using median normalization of the log-trans-

formed concentrations.

Microbiome analysis
DNA isolation

Nasal swab samples were thawed and vortexed well, and 250 uL of the suspension was then used for total nucleic extraction, which

was performed using the NucliSens� easyMAG�method (BioMérieux, Quebec). Nucleic acid free UTM samples were included as

extraction negative controls. DNA isolation from infant stool samples has been previously described.53

Microbiome 16S rRNA sequencing

The nucleic acid extracted from nasal swabs was analyzed at McMaster University by amplifying the V3 hypervariable region of the

16S rRNA gene using 341F (CCTACGGGAGGCAGCAG) and 518R (ATTACCGCGGCTGCTGG) Illumina adapted primers as

described previously105 with the addition of 0.05mg/ml RNAase to each reaction. Amplicons were then visualized on 1.5% agarose

gel and positive samples were normalized using the SequalPrep normalization kit (ThermoFisher Scientific) and sequenced on an

Illumina MiSeq platform. Infant stool was analyzed at the University of British Columbia by 16S rRNA gene sequencing of the V4 hy-

pervariable region with F515/R806 primers on a MiSeq platform as previously described.53

Shotgun metagenomic sequencing

Shotgun metagenomic sequencing data were generated and quality filtered by Diversigen (Minneapolis, MN, USA) from fecal sam-

ples (average depth of 5 million reads per sample) as previously described.106 Briefly, DNA extraction was performed using the MO

BIOPowerSoil Pro kit, with DNAquality verified usingQuant-iT PicoGreen. Libraries were then prepared, and sequencing data gener-

ated on an Illumina NextSeq using single-end 1 x 150 reads. Quality filtering included the removal of reads with a quality score <30,

and length <50. Adapter sequenceswere also trimmed, and host readswere removed. Lastly, samples with fewer than 1million reads

were removed prior to downstream preprocessing.

Shotgun metagenomic data preprocessing

Using MetaPhlAn 3 and HUMAnN 3 from the bioBakery 3 pipeline, sequences were mapped and classified into taxonomic (species

and strain level) and functional features within each sample, as previously described.94,106 Using HUMAnN 3, sequences were map-

ped to Enzyme commission (EC) and EggNOG functional annotations55 gene families were further stratified based on contribution

from known and unknown species using MetPhlAn 3 and the ChocoPhlAn pangenome database (v3.0.13). For functional abun-

dances stratified by species, additional filters were applied such that stratifications were retained only for species and overall func-

tional annotations present in at least 10% of total samples and in at least 0.01% of total abundance. After additional sample filters

(Figure S1), including the removal of samples fromparticipants withmissing breastfeeding data, infants never breastfed, and samples

not collected within the expected age range, 1,365 3-month and 1365 1-year metagenomic samples were retained. For temporal

analysis, 1306 infants with both a 3-month and 1-year sample were retained. In this final temporal dataset, species were only retained

if they were present in over 10% of samples at either 3 months or 1 year.

NMR and LC-MS/MS metabolite quantification
Metabolic profiles were created from the infant stool samples at The Metabolomics Innovation Center (TMIC) in Edmonton, Alberta

using nuclear magnetic resonance (NMR) analysis107,108liquid chromatography with tandem mass spectrometry (LC-MS/MS) anal-

ysis.106,109,110 Briefly, analyte concentrations were determined using calibration curves of known concentrations in standard mix-

tures, and isotope-labeled internal standards were used to correct for technical variation. For all metabolites, precision was

confirmed to be <5% and <10% coefficients of variability (CV), respectively. All 31 metabolites from the NMR analysis were kept

for downstream analysis, and of the 590 metabolites from the LC-MS/MS analysis, 244 metabolites that were detected in fewer

than 20% of our samples were excluded. Next, remaining values below the limit of detection (LOD) were imputed with a value of

one-half the minimum concentration for each metabolite and all metabolite concentrations were log-transformed. Additionally,

132 low-variance metabolites (log(SD) less than �5) were excluded.
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Also as previously described, PCA analysis and quantification of local outlier factor (lof) was used to identify technical sample out-

liers, and the ‘‘ComBat’’ R package84 was used for batch normalization. The sample filtering process described above for metage-

nomic data was also applied to the final metabolomic dataset used for downstream analysis (Figure S1).

Microbiome 16S rRNA gene data preprocessing
Bioinformatics

Overlapping paired-end reads were processed with the DADA2 v1.10.0 pipeline using the open-source software QIIME 2 v2019.10

(https://qiime2.org)95,96 after primer sequences were removed from the nasal sequencing data using cutadapt v2.6.97 Unique ampli-

con sequence variants were then clustered into operational taxonomic units (OTUs) using the VSEARCH v2.7.0 algorithm for closed-

reference OTU picking by aligning sequences to the SILVA v138 rDNA reference database clustered at 99% sequence similar-

ity.98,111,112 A modified version of the SILVA v138 rDNA database taxonomy was used for taxonomic labeling (e.g., numbers were

appended to differentiate distinct OTUs with the same lowest level of taxonomy identified). Downstream preprocessing was con-

ducted in R and using the Phyloseq package.85

Decontamination

OTUs assigned to Eukaryota at the kingdom level, belonging to the family of mitochondria or order of chloroplast were removed (806

OTUs in nasal and 23 OTUs in gut samples). This left a remaining 17951 OTUs in nasal and 2505 OTUs in gut samples. Potential re-

agent contaminants were identified in nasal sequencing data using the prevalence method of Decontam v. 1.10.86 Using all 70 PCR

negative controls and all 3786 samples from the 34 sequencing runs containing PCR negative controls, 245 PCR associated contam-

inants were identified using the Decontam algorithm. Using all 51 extraction negative controls and all 4388 samples from the 35

sequencing runs containing extraction negative controls, 257 extraction associated contaminants were identified. All 478OTUs iden-

tified as PCR and/or extraction contaminants were removed. Thirteen OTUs belonging to the genusHalomonas had a high read count

in negative controls of the gut sequencing data and thus were removed from gut samples [median read-count (IQR), 213 (122-270) in

negative controls and 0 (0-0) in samples].

Data filtering

Controls and samples with fewer than 8000 reads per sample were removed, leaving 5265 nasal and 1549 gut samples with 17167

and 2296 OTUs, respectively. We have rarefied to a minimum number of 8,000 reads per sample in order to retain a larger number of

samples compared to using 10,000 reads (98 more nasal samples, 5265 vs. 5167 of 5681 total, and 66 more gut samples, 1549 vs.

1483 of 1725 total). Further, we found that 8000 reads were a sufficient depth to maintain accurate richness estimates based on the

slopes of rarefaction curves, which were near zero (Figure S10 median slope 0.0008 (0.0003-0.0015) & 0.00008 (0.00002-0.0002) for

nasal and gut, respectively). OTUs with less than 0.0001%mean relative abundance in samples or biological controls were removed,

resulting in 4042 remaining OTUs in nasal and 1754 OTUs in gut samples. Using the threshold of 0.0001%, the majority of reads per

sample were retained. A median (IQR) of just 0.10% (0.01-0.35%) and 0% (0-0.02%) of total sequences were removed per nasal and

gut sample, respectively. Alpha-diversity metrics were calculated per dataset (i.e., gut and nasal). Prevalence-based analyses, rare-

faction was additionally performed to the minimum depth (8000 reads/sample).

Sample filters

Figure S1 illustrates the sample filtering process and sample sizes for downstream statistical analyses of all datasets. For 16S rRNA

gene data for instance, in addition to above mentioned filters, 560 nasal samples collected from various extra time-points from Tor-

onto participants and 8 biological controls were removed, leaving 3-month (n=2510) and 1-year (n=2187) nasal samples from 2953

participants (Figure S1). Further, participants without information on breastfeeding status at the time of sample collection were

removed (leaving 4212 nasal and 1525 gut samples). Additionally, samples collected for the 3-month time-point that were collected

earlier than 1 month or later than or equal to 8 months of age, and samples collected for the 1-year time-point that were collected

earlier than 8 months or later than or equal to 21 months of age were excluded (leaving 4181 nasal and 1518 gut samples). Lastly,

infants that never received any breast milk were removed, leaving 4095 nasal (2227 3-month and 1868 1-year) and 1472 gut (744

3-month and 728 1-year) samples. These infants were removed because we would not have had sufficient power to examine

them as a separate group and it was not biologically appropriate to group themwith infants whowere breastfed. This left 1545 infants

with nasal microbiota data at both 3-months and 1-year, and 555 infants with gut microbiota data at both 3-months and 1-year to use

for analyses of microbiota trajectories (e.g., paired analyses).

For our primary analyses of respiratory health, we included all infants whowere subsequently diagnosedwith asthma at 3 years (n =

80 (6.1%) for nasal and 56 (11.7%) for gut trajectories), as well as internal controls (n = 1236 for nasal and 421 for gut trajectories,

Table S1), and excluded infants with lower certainty in their asthma diagnosis (i.e. possible asthma, n = 91 for nasal and 58 for

gut) and those with missing asthma diagnosis data (n = 138 for nasal and 20 for gut).

QUANTIFICATION AND STATISTICAL ANALYSIS

Univariate analysis
We first assessed univariate associations between early-life factors thought to impact infant microbiota and/or infant health based on

previous literature. To investigate the early-life factors associated with nasal and gut microbiota composition we used redundancy

analysis.92 OTUs with a prevalence over 5% were retained for this analysis, and abundances were centered log-ratio (CLR)
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transformed using the CoDaSeq package87 after zeros were imputed using a Bayesian-multiplicative replacement method.91 The

univariate models for 3-month and 1-year nasal microbiota included 210OTUs and 306OTUswith prevalence over 5% in the respec-

tive timepoints, and the models for 3 month and 1 year gut microbiota included 124 and 181 OTUs with prevalence over 5% in the

respective timepoints.

Linear models93 were used to assess univariate associations between early-life factors and microbiota richness (observed OTUs),

diversity (Shannon index), richness trajectories (1 year minus 3-month richness), diversity trajectories (1 year minus 3-month diver-

sity). The Benjamini-Hochberg procedure was used to adjust all p-values.

In the univariate results presented in Figure 2, we show variation explained as theR2 of the linear model [richness (observed OTUs),

diversity (Shannon index) and trajectories (change in richness and diversity from 3months to 1 year)], orR2 of the redundancy analysis

[microbiota composition]. For linear models, the effect direction was extracted using beta-estimates. Color differentiation by direc-

tion is not shown for categorical variables (Study Center, Season and Ethnicity) or microbiota composition. Time-varying factors such

as breastfeeding (exclusive, partial, and no [reference group]) were measured at each sample collection point. For trajectories, we

show results from the time-point yielding the largest effect sizes; these are 3-month measurements for weight, age, and breastfeed-

ing, and 1-year measurements for R/E virus (rhinovirus/enterovirus) and season.

Univariate associations of breastfeeding exclusivity at the 3-month sample collection and asthma at 3 and 5 years with nasal and

gut microbiota richness, diversity and richness and diversity trajectories (1 year minus 3-month richness), early colonizers (percent of

all OTUs that were only observed in an infant’s 3month sample), persistent colonizers (percent of all OTUs that were observed in both

an infant’s 3 month and 1 year sample), and late colonizers (percent of all OTUs that were only observed in an infant’s 1 year sample),

were also investigated using Mann-Whitney U tests. Using the Wilcoxon signed-rank test (for paired data), nasal and gut microbiota

richness and diversity were also compared between 3 months and 1 year of age within infants exclusively breastfed and those no

longer breastfed (No BM) at the 3-month sample collection, and within infants that did and did not develop asthma at 3 years. These

same univariate tests were later applied to the static (3-month) and paired (3-month and 1-year) infant gut metabolomic datasets

(Figure S1) to assess consistency in findings for microbial related metabolites (namely SCFAs, Tryptophan, Tryptamine and Indole).

Microbial colonization patterns
Prevalence was used rather than abundance to determine colonization patterns in order to 1) circumvent the constraints of compo-

sitionality and sparsity in microbiome abundance data 2) use a measure of the microbiome that is more indicative of whether or not a

microbe has colonized the community (presence/absence) and 3) simplify the interpretations of microbiome trajectories in terms of

colonization. For colonization pattern and prevalence trajectory tests (based on presence/absence data), OTUs that were present in

over 10%of samples at either or both timepoints were retained for analysis, and one nasal OTU (Streptococcus sp. 40) present in over

95% of samples was removed, leaving 170 nasal and 115 gut OTUs. These filters were applied because prevalence tests require

variability in prevalence among groups, which is impossible when overall prevalence is too high or too low. Notably, the sparsity

of the nasal and gut microbiota datasets even after the abovementioned filters were applied would pose a challenge for tests of rela-

tive abundance; however, it became advantageous for our tests of prevalence trajectories (median, IQR prevalence of OTUs; Nasal,

14.7% 10.5-24.9%; Gut, 16.8%, 11.2-27.5%).

The overall difference in prevalence of microbiota between 3 months and 1 year (i.e., 1 year – 3 month) for infants with nasal sam-

ples (n=1545) or gut samples (n=555) at both timepoints was tested using the McNemar test. The Benjamini-Hochberg procedure

was used to adjust p-values. Taxa were differentiated as late colonizers (more prevalent at 1 year) when the change in prevalence

was greater than 7% and pBH < 0.001, as early colonizers (more prevalent at 3 months) when change in prevalence was less

than –7% and pBH < 0.001, and otherwise were considered typically persistent colonizers. These p-value and effect-size thresholds

were selected based on the appearance of the nasal and gut volcano plots (Figure 3A), and because even colonizers that we would

consider ‘‘persistent’’ change slightly in prevalence between time-points, therefore a p-value threshold alone would not be sufficient.

This provided general classifications of colonization patterns of microbiota over all infants. However, given that a specific microbe

can be early (3 month only), persistent (both timepoints), late (1 year only) or absent at the individual level, we additionally compared

these patterns between different early-life exposures and respiratory phenotypes.

Prevalence trajectories coordinate system (PreTCO System)
In Order to systematically compare between the colonization patterns of different health phenotypes, both at the microbial commu-

nity level and at the individual taxa level, we devised a novel computational approach we term ‘prevalence trajectories coordinate

system’ (PreTCO system, Figure 3B). We define the prevalence trajectories as a cartesian coordinate system in two dimensions,

in which each point is defined by a pair of numerical coordinates. Each point represents a taxon and its coordinates correspond

to the change in prevalence from 3-months to 1-year for two phenotypic groups. For example, when comparing nasal colonization

patterns in infants diagnosedwith asthma at 3 years and healthy infants (Figure 3C), the numerical coordinates ofRothia 1 are (-15, 7).

The first coordinate (i.e., -15) corresponds to the change (e.g., a 15% decrease) in prevalence between the 3-month and 1-year sam-

ples across all subjects fromphenotype 1 (i.e., asthma). The second coordinate (i.e., 7) corresponds to the percent change (e.g., a 7%

increase) in prevalence between the 3-month and 1-year samples across all subjects from phenotype 2 (i.e., healthy). The PreTCO

system enables visualization of colonization patterns globally, with a perfect y = x linear relationship indicating no difference between

groups and increasing deviations from the y = x linear relationship indicating a greater difference in prevalence trajectories between
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groups. The overall difference in community colonization patterns, considering all taxa collectively, is reflected by evaluating the pair-

wise distance between the x and y coordinates using the Wilcoxon signed-rank test that generates a single p-value (i.e., the global

difference in colonization patterns between the two phenotypes). This coordinate system also enables local evaluations of specific

microbial taxa that differ in colonization patterns between the groups. To this end, we generate a null distribution using permutations

and test the difference in prevalence trajectories of individual taxa between groups.

Of note, prior studies have relied on the concept of estimated ’microbiome age’ to assess microbiome maturation patterns. While

insightful, the microbiome age approach has its drawbacks. These include a lack of precision in identifying specific microbes simul-

taneously associated with multiple phenotypes, such as asthma and breastfeeding in this case. Moreover, it may not fully utilize lon-

gitudinal data when comparing repeated measures sampled from the same participants over time.

In contrast, the PreTCO system presents a novel perspective on microbial maturation. Rather than predicting a child’s age based

on the microbiome, PreTCO characterizes microbial colonization patterns over time, identifying commonalities across diverse phe-

notypes. This approach pinpoints microbial features with varying colonization patterns, offering a deeper understanding of matura-

tion between two (or more) timepoints; in this case, from 3 months to 1 year. Unlike microbiome age, PreTCO allows exploration of

dynamic changes within the microbiome community over time, enabling analysis of repeated measures from the same individual.

Moreover, PreTCO accommodates various facets of microbiome data, including taxa abundance, presence/absence, and functional

data such as EC numbers (see Figure 5). It empowers the comparison of temporal changes within phenotypic groups (e.g., breastfed

vs. no longer breastfed, healthy vs. children diagnosed with asthma) and across groups (e.g., asthmatic and no longer breastfed vs.

healthy and breastfed), providing valuable insights into microbiome development. Importantly, PreTCO addresses critical issues like

sparsity and compositionality in trajectory analysis, enhancing the robustness of our findings.

The main exposures compared using the PreTCO were exclusive breast milk (nasal n=794, gut n=271) and no breast milk

(nasal n=234, gut n=79) at 3-month sample collection, and the main respiratory phenotypes compared were no asthma (nasal

n=1236, gut n=421), and asthma (nasal n=80, gut n=56) at 3 years. Additional comparisons testedwere asthma at 3 and 5 years (nasal

n=53, gut n=35, defined as probable asthma diagnosis at 3 years, and possible or probable asthma diagnosis at 5 years) compared to

no asthma at 3 or 5 years (nasal n=1038, gut n=347).

For the main exposure (breastfeeding exclusivity at 3 months) and respiratory phenotype (asthma at 3 years), the PreTCOmethod

was later applied to infant gut metagenomic data, to assess whether similar patterns of delayed functions could be observed for spe-

cies identified as late colonizers based on 16S data. For this analysis, we selected 8 species identified as later colonizers in infants

who did not develop asthma compared to those that developed asthma at 3 years and that had species-level identification and were

found in the EC and EggNOG annotations:Ruminococcus gnavus (401 EC & 940 EggNOG),Bifidobacterium bifidum (419 & 797 func-

tions), Bifidobacterium longum (481 & 713 functions), Sellimonas intestinalis (305 & 128 functions), Eubacteriu hallii (487 & 574 func-

tions), Eubacterium eligens (423 & 95 functions),Coprobacillus cateniformis (288 & 21 functions), and Parabacteroides merdae (360 &

15 functions). In addition to using the same methods as described above for 16S data to assess the global and individual changes in

prevalence of functional annotations, the change in prevalence of functional annotations was stratified by species and for each spe-

cies, theWilcoxon signed-rank test was used to generate p-value for the percent change in prevalence of functions between groups.

The Benjamini-Hochberg procedure was used to adjust p-values.

Prevalence trajectories of microbes and their pangenomes
Throughout the manuscript we calculated two complementary types of trajectories: (1) trajectories describing changes in microbial

prevalence, with OTUs for 16S data and species for shotgun metagenomics; and (2) trajectories describing the prevalence of functions

assigned to these species, using shotgunmetagenomics. Applying the PreTCOanalysis to the first type of trajectories provides insights

into the changes in microbial prevalence over time. For the second type of trajectories, applying the PreTCO reveals changes in func-

tional prevalence, capturing the genetic diversity of the species’ and representing their pangenomes (i.e., the entire set of genes from all

strains within a clade). This approach potentially uncovers functions of different sub-species or strains within the same clade.

To discern the additional insights provided by assessing both types of trajectories, we examined their relationships, as depicted in

Figure S8. While there is a moderate to strong correlation between the prevalence trajectories of a species and some of its functional

trajectories, the correlation is not perfect. The significant variability among different functions, as illustrated in Figure 5A, highlights

this point. This observed variability in functions within a species indicates that functional data not only mirror the prevalence of each

species but also expose distinct genetic variations in subspecies that are not captured by species abundance data alone.

To exemplify this point, we focused on R. gnavus, and analyzed how its overall prevalence trajectory (derived from shotgun metage-

nomics and 16S) correlates with the trajectories of its functions (derived from shotgun metagenomics, n = 392 functions). Next, we

compared the trajectories of these eight R. gnavus functions with the overall prevalence trajectories of the top ten "late" taxa in the

gut from 16S data using a correlation analysis. Finally, we randomly selected a set of 6 functions that are not significantly delayed

with breastfeeding and calculated the correlation between the overall R. gnavus prevalence trajectory and the trajectory of this random

set of R. gnavus functions (Figure S8).

Prediction model
We trained a machine learning model, gradient-boosted decision trees, to differentiate between children that were diagnosed with

asthma at 3 years (n = 80 for nasal and 56 for gut) and healthy controls (n = 1236 for nasal and 421 for gut). We trained and tested the
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model using a 10- repeated cross validation. In each fold, the subjects were completely held out to avoid data leakage from train to

test (each subject is represented by their trajectories/colonization patterns). We used the CLR transformed abundance to represent

microbial composition of either the nasal or gut microbiome at a single time point (3 months; 170 and 115 features per time point for

nasal and gut respectively) as well as prevalence for the microbial trajectories and colonization patterns (340 and 230 features for

nasal and gut respectively). We evaluated and compared the prediction accuracy using the area under the receiver operating char-

acteristic curve (auROC). Finally, we constructed a model combining the microbial trajectories of either the nasal or the gut with hu-

man milk components (HMOs, fatty acids, cytokines, antibodies). To elucidate which microbial taxa and human milk components

drive the prediction accuracy of asthma at 3 years, we evaluated the contribution of these features to our machine learning model

by ranking the features (i.e., microbial taxa and human milk components) by their contribution to the model performance. Sample

sizes per model - nasal trajectories: n = 1407, nasal trajectories and milk n = 625, gut trajectories: n = 535, gut trajectories and

milk: n = 283, nasal and gut trajectories combined: n = 378, nasal trajectories, gut trajectories and milk: n = 283. Models were gener-

ated using the gbm package.88

Multivariate analysis
We have shown that microbial colonization patterns are strongly associated with breastfeeding and asthma. We next confirmed that

these findings hold true after adjusting for potential confounders. We specifically adjusted for likely confounders based on previous

univariate analyses showing associations with both the primary outcome (asthma) and exposure (nasal and/or gut microbiota trajec-

tories): antibiotics in the first year of life, any older siblings, prenatal smoke exposure, birth mode, maternal asthma, study center, R/E

virus at 1 year, colds in the first 3months and infant age at 3-month sample collection. Further, given that microbial communities work

as a system, we constricted microbiome trajectories as latent constructs. Indicators of the infants’ nasal and gut microbiota coloni-

zation that were significantly associated with both breastfeeding and asthma in univariate analyses (PreTCO system for taxa and

Mann-Whitney U test for summary metrics) were selected and modeled as latent variables (Figure S6A). After adjusting for potential

confounders using multivariate regression, nasal and gut microbiota trajectories remained associated with breastfeeding status at

3 months (standardized betaadjusted = 0.08, p = 0.004 for nasal and 0.16, p<0.001 for gut microbiota trajectories) and with asthma

at 3 years (standardized-betaadjusted = –0.17, p < 0.001 for nasal and –0.34, p < 0.001 for gut microbiota trajectories) (Figure 7A).

Structural Equation Models
Structural equation modeling (SEM) was used to perform multivariate mediation in order to determine the indirect effects of breast-

feeding exclusivity on asthma at 3 years through nasal and gut microbiota trajectories. SEM was conducted using the lavaan

package.89

We created a latent variable representing the microbiome that includes the following information: (1) overall colonization pattern

summary metrics for all the microbes (proportion of late colonizers, microbiota richness and diversity trajectories), (2) the prevalence

of specific taxa found in our previous analyses. This way the latent variable is representing both the temporal trajectories across the

entire community as well as in specific taxa found to have differential dynamics. Specific taxa were selected in the following way – in

the analyses prior to the SEM we found 36 nasal taxa and 36 gut taxa that their colonization patterns significantly associated with

asthma. We further found a substantial overlap between these specific taxa that exhibit later colonization patterns in exclusively

breastfeed infants (vs. early breastfeeding cessation) and healthy infants (vs. infants diagnosed with asthma at 3 years). Overall,

47% (17/36) of the late nasal colonizers and 28% (10/36) of late gut colonizers were also associated with breastfeeding (p <0.05,

permutation test). The prevalence trajectories of these specific taxa were selected. Covariate selection was also informed by statis-

tical tests described above, and based on their potential importance to the outcome, asthma. The latent variables were scaled to

have a variance of one. Given the inclusion of ordinal and dichotomous variables, diagonally weighted least squaresmodel parameter

estimates, robust standard errors and amean and variance adjusted test statistic were used. A comparative fit index (CFI) > 0.9, root-

mean-square error of approximation (RMSEA) <0.05, and standardized root-mean residuals (SRMR) <0.08 were considered indica-

tors of good model fit113 (Table S7). In addition to the removal of infants with an uncertain (‘‘possible’’) asthma diagnosis, only infants

with data on both nasal and gut microbiota trajectories and with no missing data were included in the final model, limiting the sample

size to 341 infants. Therefore, we also made separate models for nasal and gut microbiota trajectories to determine whether these

findings held true for the larger subsets of infants with nasal microbiota (n=1316) or gut microbiota (n=477) at both timepoints (Figure

S9). In this case, nasal and gut microbiota trajectories were modeled separately, and models were constructed in the same manner

as described above, using the same covariates and gut and nasal microbiota trajectory latent variables, and also using the lavaan

package.89 Further, as a preliminary step prior to generating these finalmediationmodels, multivariate regression was used to assess

breastfeeding status at 3 months as a predictor of microbiota trajectories separately from the assessment of microbiota trajectories

as a predictor of asthma at 3 years. Figures were generated using the R package ggplot2.90
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Supplemental figures

Figure S1. Study design and sample sizes from recruitment to analysis, related to Figure 1
1Used a subset of stool samples selected based on availability of infant blood samples and enrichment for infant atopy and/or wheeze at 1 year of age. 2After

removal of reads that did not pass DADA2 filters95 and contaminant reads, sampleswith fewer than 8,000 readswere removed. 3Participants were removed if they

were missing values for implied breastfeeding duration or breastfeeding status at 3 months or were no longer breastfeeding when the breast milk sample was

obtained (i.e., milk collected and stored at home). 4Age range for 3-month visit defined as over 1 and less than 8 months and for 1 year visit defined as over 8 and

less than 21 months. 5As described in Hoskinson et al.106 6Sample sizes indicated are for samples with either NMR and/or LC-MS data.
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Figure S2. Microbiota richness at individual time points across nasal and gut microbial niches, related to Figure 2

(A and B) Microbiota richness at individual time points for the same subset of infants with both 3-month and 1-year data used to assess microbiota trajectory

variables (see Figures 2B–2E).
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Figure S3. Replication of Figure 3A, using species-level shotgun metagenomic data

The difference in prevalence of microbiota between 3 months and 1 year (1-year to 3-month prevalence in percentage) for infants with gut samples at both time

points (n = 1,306 infants) was assessed. The difference in prevalence between time points was tested using the McNemar test. The horizontal line indicates the p

value threshold (p(BH) < 0.001), and vertical lines indicate the effect size thresholds (�7% and 7%) used to define early (more prevalent at 3 months), persistent

(similar prevalence at both time points), and late (more prevalent at 1 year) colonizers. The three early and late colonizers with the highest effect sizes are an-

notated. BH, Benjamini-Hochberg adjusted p values.
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Figure S4. Distribution of early, persistent, and late colonization patterns in the nasal and gut niches across infant feeding groups and
respiratory phenotypes, related to Figure 3

(A) Comparison of the proportion of late colonizers between healthy infants and those with asthma at 3 years.

(B) Comparison of the proportion of late colonizers among infant feeding groups. All infant feeding groups are shown, i.e., exclusive breastfeeding (exclusive),

partial/mixed feeding (partial), and no breastfeeding (no BM) at 3-month sampling. p values correspond to the comparison between exclusive to no BM. The y axis

shows the number of OTUs identified as early, persistent, or late colonizers per infant as a percentage of total OTUs. Comparisons are tested using the Mann-

Whitney U test, *p < 0.05, **p < 0.001.
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Figure S5. Microbiota richness and colonization patterns between infants with and without asthma at 5 years, and with and without asthma

at both 3 and 5 years, related to Figure 3

Main analyses and figures refer to asthma at 3 years only (Figures 2F and 3C).

(A and B) Comparisons of the change in prevalence of microbiota (1-year to3-month prevalence in percentage) (A) and microbiota richness trajectories

(B) between infants with (n = 99 for nasal, n = 52 for gut) and without (n = 1,142 for nasal, n = 409 for gut) asthma diagnosed at 5 years.

(C and D) Comparisons of the change in prevalence of microbiota (C) and microbiota richness trajectories (D) between infants with and without asthma at both 3

and 5 years. Infants with no asthma at both 3 and 5 years (n = 1,038 for nasal and n = 347 for gut) were compared to infants who had asthma at 3 years (probable

asthma diagnosis), and possible or probable asthma at 5 years (n = 53 for nasal and n = 35 for gut). We found a strong association between the change in

prevalence of nasal and gut microbial taxa and asthma status at 3 and 5 years (9.1% [0.8%–17.3%] for no asthma vs. 5.7% [0.0%–13.2%] for asthma in nasal

samples; 8.4% [5.0%–14.3%] for no asthma vs. 2.9% [�2.9%–8.6%] for asthma in gut samples, p < 0.001). The trajectory of gut microbiome richness was

associated with asthma at both 3 and 5 years of age (p = 0.008), whereas the nasal microbiome richness trajectory showed no significant association (p = 0.11).

Comparisons were tested using the Mann-Whitney U test.
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Figure S6. Overlap in associations between microbiota prevalence trajectories and breastfeeding and respiratory phenotypes, related to

Figure 3

(A) Overlap in taxa with prevalence trajectories indicating significantly earlier (blue) or later (red) colonization in relation to breastfeeding status at 3 months

(exclusive vs. no breastfeeding) and asthma status at 3 years (no asthma vs. asthma). Percentages are out of the total taxa associated with either breastfeeding

exclusivity or asthma.

(B and C) Overlap among taxa that colonized later with exclusive breastfeeding (vs. no BM) and with healthy respiratory/allergy phenotypes (i.e., no asthma at 3

years vs. asthma; no asthma at 3 and 5 years vs. asthma at both 3 and 5 years; no colds at 0–3 months vs. colds; no atopy vs. atopy [no wheeze]) in nasal (B) and

gut (C) niches. Using a p value threshold of 0.05. The numbers above the bars indicate the number of OTUs in the intersection, and the ‘‘set size’’ indicates the total

number of associated OTUs (‘‘later’’ colonizers) for each factor in the prevalence trajectory analysis (see also Table S4). The dendrograms show the total overlap

with asthma for each variable.
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Figure S7. Timing of acquiring microbial functions in the first year of life associated with breastfeeding and asthma (EggNOG orthologs),

related to Figure 4

Main analyses use EC functions (Figure 4).

(A) Prevalence trajectory coordinate system analyses comparing the change in prevalence of EggNOG orthologs (1-year to 3-month prevalence in percentage;

STAR Methods) between (1) infants exclusively breastfed (n = 658) and those no longer breastfed (n = 202) at 3 months; and (2) healthy infants (n = 1,075) and

those later diagnosedwith asthma at 3 years (n = 79). Themedian (IQR) change in prevalence of each group is shown on the group’s axis. Overall significancewas

tested using a Mann-Whitney U test. The overall prevalence across both time points is shown as point size.

(B) Percentage change in prevalence of EggNOG orthologs, stratified by species. Significance was tested using a Wilcoxon signed-rank test. Each point rep-

resents a single function from the focal species. As an effect size, the median of the difference in the trajectory measure (percentage change in prevalence) is

shown. Sample sizes for this test are the number of functions (differs per species, as annotated in the plot). *p(BH) < 0.05; **p(BH) < 0.001. In both (A) and (B), we

selected functions that were linked to species identified as late colonizers in infants who did not develop asthma (vs. asthma at 3 years) based on our 16S rRNA

gene results (p < 0.05, Figure 3D).
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Figure S8. The correlation between the species-based trajectories/colonization patterns and functional-based ones in R. gnavus, related to

Figure 5

(A) Correlation between R. gnavus overall species trajectory and functional trajectories depends on associations with breastfeeding and asthma. Each point

represents the trajectory of a different EC annotation assigned to R. gnavus and the strength of its correlation with the overall species

trajectory ofR. gnavus based onmetagenomic data. Functions that are not significantly late in breastfed infants had the lowest Spearman correlation to the overall

trajectory (30 functions; median of 0.19). Functions that are significantly late in breastfed infants have a higher correlation, with a median of 0.62 (max–min, 0.05–

0.91). Finally, the eight functions we identified as late in both breastfed infants and those not diagnosed with preschool asthma exhibit comparable and even

higher correlation, with amedian of 0.72 (0.47–0.85). Functionswere categorized as ‘‘not late with exclusive BM’’ (n = 30), ‘‘late with BMonly not asthma’’ (n= 392),

and ‘‘late with both BM and no asthma at 3 years’’ (n = 8) (based on a previous PreTCO analysis; see Figure 4). Mann-Whitney U test, **p < 0.001, *p < 0.05.

(B) Prevalence of R. gnavus species and selected R. gnavus functions across time for infants exclusively breastfed (n = 658), and not breastfed (n = 202) at

3 months (right), and healthy infants (n = 1,075) and those with asthma (n = 79) at 3 years. Prevalence was assessed frommetagenomic data, and shown for eight

functions (color annotations) with significant delay in their introduction in breastfed infants and healthy ones based on the PreTCO analysis (p < 0.01, see Fig-

ure 4A). An additional 6 functional trajectories (gray annotation) were randomly selected from the 30 not identified as delayed in breastfed infants (p > 0.01).

Numbers shown in blue indicate the percentage change in prevalence (1 year–3 months).

(C) Comparing the trajectories of the identified eightR. gnavus functions (y axis) with the overall prevalence trajectories of the top 10 ‘‘late’’ taxa in the gut identified

using 16S rRNA gene data. R. gnavus showed the strongest correlation with these functional trajectories (median [IQR] rho = 0.33 [0.29–0.34], pBH < 0.05),

followed by Flavonifractor (rho = 0.17 [0.16–0.19], pBH < 0.05, Figure S8C). This correlation was anticipated as these functions are all mapped to R. gnavus.

However, the moderate strength of these correlations suggests genetic variations within members ofR. gnavus that are not captured by species abundance data

alone. The functional trajectories (y axis) were selected based on a significant delay in their introduction in breastfed infants and healthy infants (p < 0.01) in the

PreTCO analysis on functional data obtained from metagenomic sequencing (see Figure 4A). **p(BH) < 0.001, *p(BH) < 0.05, �p < 0.05. EC names: 2.4.2.18,

anthranilate phosphoribosyltransferase; 1.11.1.1, NADH peroxidase; 3.2.1.22, alpha-galactosidase; 2.7.7.7, DNA-directed DNA polymerase; 5.99.1.2, DNA

topoisomerase; 3.5.1.2, glutaminase; 1.3.1.76, precorrin-2 dehydrogenase; 3.5.1.24, choloylglycine hydrolase; 1.1.1.38, malate dehydrogenase; 1.4.1.16, di-

aminopimelate dehydrogenase; 2.1.1.144, trans-aconitate 2-methyltransferase; 2.7.8.26, cobalamin synthase. Overall, these results demonstrate that not all

functional trajectories mirror the overall species trajectory. Additionally, these findings suggest the potential for functional diversity among R. gnavus members,

with functions possibly changing over the course of early life. Whether these changes benefit respiratory development may depend on early-life factors such as

breastfeeding. This hypothesis is further supported by extensive literature indicating strain-dependent functional adaptations within species. For example, the

ability of R. gnavus to symbiotically utilize host mucin glycans is believed to be strain-dependent.68
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Figure S9. The trajectories of nasal and gut microbiota mediate the association between breastfeeding exclusivity and asthma in separate

models, related to Figure 7

Separate structural equation models showing the mediating effects of nasal (A) and gut (B) microbiota trajectories implicated in asthma on the association

between breastfeeding exclusivity at 3 months and asthma at 3 years. Standardized beta-coefficients are reported, with p values in parentheses. Positive as-

sociations with microbiota trajectories indicate delayed microbiota colonization (later), whereas negative associations indicate earlier colonization. Variable

selection for latent constructs was informed based on univariate associations with both asthma and breastfeeding. Late colonizers (the proportion of microbiota

classified as late colonizers), richness trajectories (change in observed OTUs), and diversity trajectories (change in Shannon index) were summary variables

selected based on significant associations with asthma at 3 years and breastfeeding exclusivity (no vs. exclusive breastfeeding at 3 months) for nasal or gut

microbiota in Mann-Whitney U tests (p < 0.05). Individual microbiota prevalence trajectories that were associated with asthma at 3 years and breastfeeding

exclusivity in permutation tests (p < 0.05, see Table S4) were also included. This analysis was performed for infants who had data on nasal microbiota trajectories

(A, 80 infants with asthma and 1,236 infants without asthma diagnosed at 3 years), and a second analysis was performed for infants who had gut microbiota

trajectory data (B, 56 infants with asthma and 421 infants without asthma diagnosed at 3 years) breastfeeding exclusivity was an ordered variable (exclusive,

partial, or no human milk at 3-month sampling). See Table S7 for details.
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Figure S10. Rarefaction curves for all samples that were used to set a threshold for minimum number of reads, related to STAR Methods

The blue line is the rarefaction threshold of 8,000 reads per sample.
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